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Abstract

Human body motions have been analysed for decades with a view on en-
hancing occupational well-being and performance of workers. On-going pro-
gresses in miniaturised wearable sensors are set to revolutionise biomechan-
ical analysis by providing accurate and real-time quantitative motion data.
The construction industry has a poor record of occupational health, in par-
ticular with regard to work-related musculoskeletal disorders (WMSDs). In
this article, we therefore focus on the study of human body motions that
could cause WMSDs in construction-related activities. We first present an
in-depth review of existing assessment frameworks used in practice for the
evaluation of human body motion. Subsequently different methods for mea-
suring working postures and motions are reviewed and compared, pointing
out the technological developments, limitations and gaps; Inertial Measure-
ment Units (IMUs) are particularly investigated. Finally, we introduce a
new system to detect and characterise unsafe postures of construction work-
ers based on the measurement of motion data from wearable wireless IMUs
integrated in a body area network. The potential of this system is demon-
strated through experiments conducts in a laboratory as well as in a college
with actual construction trade trainees.

Keywords: WMSDs, construction, Health, Well-being, biomechanics,

∗Corresponding author
Email addresses: e.valero@hw.ac.uk (Enrique Valero), a.sivanathan@hw.ac.uk

(Aparajithan Sivanathan), f.n.bosche@hw.ac.uk (Frédéric Bosché),
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inertial measurement unit

1. Introduction1

Deterioration of workers’ physical health and loss of workdays not only2

impact their well-being and quality of life, but also the country’s economy.3

For example, in 2011 more than 400,000 people in the United Kingdom suf-4

fered from illness caused by their work, resulting in 7.5 million lost days (The5

Health and Safety Executive, 2014).6

Musculoskeletal Disorders (MSDs) are injuries or pain affecting muscles,7

joints and tendons. MSDs result from daily awkward postures and handling8

tasks, such as: forceful exertions in lifting or carrying loads, bending and9

twisting the back or limbs, exposure to vibration or repetitive movements10

(including keyboard typing). If these activities are work-related, then the re-11

sulting injuries and disorders are referred to as Work-related Musculoskeletal12

Disorders (WMSDs).13

1.1. WMSDs in Construction14

Construction workers are particularly at risk of WMSDs because they are15

frequently exposed to awkward postures and motions, such as lifting, bending16

or twisting, sometimes for long periods of time. Comparing the different17

industries in the UK, the Health and Safety Executive (HSE) shows that,18

despite some improvement over the last 10 years, the rate of self-reported19

work-related illness in the construction sector remains the second highest20

behind transport and storage (see Figure 1).21

With the construction sector employing almost twice more people than22

the transport sector (2.3 million and 1.47 million respectively, according to23

the British Office for National Statistics), the number of self-reported work-24

related illness in the construction sector is likely the highest among all sectors.25

Note that these figures do not take account of the additional large number26

of unreported injuries.27

The extent to which certain construction occupations are exposed to awk-28

ward positions is well summarized by the Center for Construction Research29

and Training (CPWR) in the United States which reported that carpet and30

tile installers are on their knees, crouching or stooping more than the 80% of31

the time, and bricklayers spend 93% of their time bending and twisting the32

body or doing repetitive motions (The Center for Construction Research and33

Training, 2013). Figure 2 summarizes the rates of WMSDs reported due to34
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Figure 1: Rates of self-reported WMSDs, by industry, for people working in the last 12
months (data source: The Health and Safety Executive (2014)).

overexertion per construction occupation, in 2013 in the United States. Ma-35

sonry workers, for example, appear particularly exposed to WMSDs. Memar-36

ian and Mitropoulos (2012) conducted a detailed study of incidents and risk37

activities in a large masonry company and concluded that the tasks result-38

ing in most incidents (and consequently an important number of days away39

from work and days with modified tasks) were: laying bricks (19%), scaffold40

erection (18%) and material handling (14%).41

Focusing on the postures resulting in WMSDs, Zimmerman et al. (1997)42

identify the top five ergonomic problems in construction as: working in the43

same position for long periods, bending or twisting the back in an awkward44

way, working in awkward or cramped positions, working when injured or45

hurt, and handling heavy materials or equipment. Figure 3 illustrates the46

percentage of non-fatal injuries (i.e. resulting in days away from work) for47

each body region, as reported by The Center for Construction Research and48

Training (2013). The upper body, and particularly the back, appears to be49

the most impacted.50
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Figure 2: Rate of overexertion injuries resulting in days away from work, by construction
subsectors (data source: The Center for Construction Research and Training (2013)).

Figure 3: Distribution (in %) of non-fatal injuries resulting in days away from work in
construction (source: The Center for Construction Research and Training (2013)).
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1.2. Contribution and Structure of the Article51

Occupational health has been recognized as an important problem since52

Gilbreth started his motion studies in the early 20th century (Gilbreth and53

Gilbreth, 1917). Yet, despite advancements in technology and the devel-54

opment of many tools and initiatives, WMSDs persist as statistics reflect.55

Better monitoring the body movements of workers, including during their56

training period, could help correct bad postures and raise awareness about57

good practice, and consequently improve their quality of life and save working58

days and money.59

Focusing on the construction sector, this article first reviews tools cur-60

rently employed by government and companies to assess the postures and61

motions of workers with regard to their long-term health, including the risk62

for WMSDs (Section 2). Next, Section 3 provides an in-depth review of mea-63

surement tools that have been proposed and used for human biomechanical64

analysis. The use of Inertial Measurement Units (IMUs) is particularly stud-65

ied as this relates to the system proposed here. Section 3 concludes with the66

identification of the need for developing and assessing non-invasive wearable67

systems for continuous body motion monitoring to support assessors and68

workers in improving construction tasks and preventing WMSDs. Section 469

then presents our proposed Activity Tracking system based on IMUs inte-70

grated in a novel wireless Body Area Network (called AT-BAN) and reports71

experimental results on the recognition of body postures related to lifting, an72

activity well-known to be problematic. The experiments are conducted both73

in a laboratory and in a college with actual construction trade trainees. Sec-74

tion 5 concludes this article with an analysis of the contributions made and75

suggestions for further development and assessment of the proposed system.76

2. Current practice for evaluating postures and body movements77

in the workplace78

The postures and body movements of workers can impact their health79

and well-being and also affect productivity. F. B. Gilbreth was a pioneer of80

motion study in the field of industrial management (Gilbreth and Gilbreth,81

1917, 1924), focusing mainly on better coordinating the body motion of work-82

ers to improve productivity. Ever since, practitioners, physiotherapists and83

ergonomists, from both public and private organisations, have taken a keen84

interest in the study and evaluation of tasks and workers, developing various85
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assessment methods with focus on productivity and/or health. These meth-86

ods consider different parameters to be measured, from motion amplitude87

and frequency to muscle activity.88

Section 2.1 reviews the main risk assessment methods that have been de-89

veloped and applied in various sectors. Section 2.2 then reviews how most of90

these methods have particularly been applied within the construction sector.91

Section 2.3 summarizes the strengths and limitations of these methods, with92

particular focus on the posture and motion measurement techniques they93

employ.94

2.1. Current WMSD risk assessment method95

Government agencies dedicated to health and safety issues across indus-96

tries (such as the Health and Safety Executive (HSE) in the UK or the Na-97

tional Institute for Occupational Safety and Health (NIOSH) in the United98

States), universities as well as some companies have been developing tech-99

niques and proposing guidelines to assess the daily tasks of workers and alter100

them to reduce the number of work-related injuries and illnesses. Some of101

these techniques focus on assessing the task, in order to infer its impact on102

posture and body motions and as a result the level of risk of WMSDs. These103

methods include the Work Practices Guide for Manual Lifting developed by104

NIOSH (NIOSH, 1981; Waters et al., 1994) to help practitioners assess and105

minimize the risks associated to lifting jobs, as well as the method of Snook106

and Ciriello (1991) to assess the risk of lower back disorder (LBD) in lifting,107

lowering, carrying, pushing and pulling tasks. While practical, these methods108

however infer postures and body motions as opposed to directly measuring109

them, which adds a layer of potential error in the overall risk assessment.110

Other methods have been developed that are instead based on the direct111

measurement of actual postures and body movements. Since direct measure-112

ment is preferable to identify the source of WMSDs and this is the approach113

considered in the system presented later in this manuscript, these methods114

are reviewed in more detail below.115

Assessment of Repetitive Task (ART) and Manual Handling Assessment116

(MAC). One of the methods developed by the HSE in the UK, the As-117

sessment of Repetitive Task (ART) tool (The Health and Safety Executive,118

2009), assesses repetitive tasks typically carried out by factory workers (e.g.119

packaging). A scoring method is established that takes into account the120

posture of the upper limbs, neck and trunk, evaluated by a risk assessment121
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expert who is observing the worker. The final score rates the level of expo-122

sure of the worker, helping to identify the risk factors that contribute to the123

development of WMSDs. A traffic light coding system is also introduced to124

report performance in a way easily understood by users.125

The HSE also proposes the Manual Handling Assessment (MAC) tool126

(The Health and Safety Executive, 2002) to evaluate other tasks involving127

risks to the lower back. Motion parameters related to lifting and carrying128

movements are considered, such as back bending, torso twisting, and the dis-129

tance between the hands and the lower back. These movements are assessed130

by an expert watching the workers in the jobsite.131

Note that ART and MAC evaluation tools are based on the subjective132

(qualitative) judgement of the assessors, as opposed to the quantitative direct133

measurement of body motions.134

Ovako Working Analysis System (OWAS). The (OWAS) was developed by135

the steel-manufacturing company Ovako with the goal to redesign their pro-136

duction line. It identifies and evaluates bad working postures based on the137

visual observation of the daily routine of workers (Karhu et al., 1977). Pos-138

tures are classified in more than 250 different poses by assessing the position139

of trunk, arms and legs, as well as the weight of the load. Every posture is140

coded to enable the evaluation of the overall risk of WMSDs.141

Posture, Activity, Tools and Handling (PATH). The (PATH) assessment142

method, proposed by Buchholz et al. (1996), codes the postures as originally143

suggested by Karhu et al. (1977) in the OWAS method, adding new codes for144

different activities, loads and equipment. By evaluating images recorded dur-145

ing work activities, assessors identify the proportion of time workers spend146

in the coded postures that are classified as ‘neutral’ or ‘non-neutral’.147

Rapid Upper Limb Assessment (RULA) and Rapid Entire Body Assessment148

(REBA). McAtamney and Nigel Corlett (1993) present the Rapid Upper149

Limb Assessment (RULA) survey to evaluate certain postures of the neck,150

trunk and upper limbs. Ergonomists code each posture by visually evaluating151

the angles between the studied body parts, and obtain a grand score that152

is used to decide whether a movement is considered acceptable (based on153

the criteria derived from the relevant literature) or some changes have to be154

made.155

The Rapid Entire Body Assessment (REBA) method (McAtamney and156

Hignett, 1995; Hignett and McAtamney, 2000) was developed to improve and157
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extend RULA. Like RULA it evaluates and scores the postures of workers,158

but extends it by visually evaluating the positions of the legs, considering159

postural loading factors and evaluating awkward positions in upper limbs160

(e.g. if arms are abducted or rotated or if shoulders are raised).161

Quick Exposure Check (QEC). The QEC tool, proposed in (Li and Buckle,162

1999), consists of a questionnaire and a scoring sheet. The scoring sheet is163

used by experts to assess the movements of the trunk and upper limb joints to164

identify those postures leading to WMSDs. To create this tool, Li and Buckle165

registered the movements of workers by means of a vision-based platform for166

motion capture, and, with the opinions of experts assessors, they defined the167

different postures to be considered and the range of movements leading to168

WMSDs.169

In contrast to the previous tools, not only practitioners are involved in170

the evaluation but workers also play their role by filling out in a questionnaire171

related to the studied movements.172

2.2. Application in Construction173

Most of the above-mentioned works have actually been applied and vali-174

dated in the construction sector. McGorry and Lin (2007) study grip strength175

in the handling of tools used in construction trades using the RULA method176

as a basis to evaluate the posture of the arms obtained from different tools177

configuration. Kim et al. (2011) apply the REBA method to study the move-178

ments of workers during the installation of prefabricated walls in order to im-179

prove panel design and construction processes. Wall panel installation is also180

evaluated by means of the QEC method in (Rwamamara, 2007). Kivi and181

Mattila (1991) were pioneers in the application of the OWAS method to the182

field of construction, developing a basic portable computer system to manu-183

ally score the observed tasks; the computer then calculates an overall score.184

The same group later used that same system to evaluate the use of tools,185

such as hammers (Mattila et al., 1993). More recently, the OWAS method186

has also been used in (Saurin and de Macedo Guimaraes, 2008) as a tool to187

assess the body position of operators working on scaffolds and painting or188

coating bulding façades. Finally, Forde and Buchholz (2004) have evaluated189

the movements of ironworkers by means of the PATH method in order to190

develop improved tools and work techniques, reducing non-neutral postures.191
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2.3. Summary192

The assessment methods reviewed in this section are summarized in Ta-193

ble 1 that compares them based on the posture characteristics and means194

of measurements they consider. While they consider various body parts and195

motion characteristics, it is interesting to point that they were all initially196

designed, and often are still used in practice, using visual observations by197

experts as the main means of measurement of posture and body movement.198

Yet, visual observations tend to be imprecise and result in excessively sub-199

jective evaluations (Kemmlert, 1995), including when conducted by expert200

observers (e.g. ergonomists). Even when observing video recordings of activi-201

ties (as opposed to live), it is quite complicated to identify patterns, compare202

movements or establish individual differences.203

This subjectivity and lack of accuracy leads to the need to replace or204

supplement visual observations with other more accurate and precise posture205

measurement devices and methods. The development of those is discussed206

in the following section.207

Body part
Posture characteristics

Means of measurement
Ampl. Durat. Freq.

RULA Upper limbs X – X Visual assessment
Video/Picture
Software/Table

REBA Whole body X – – Visual assessment
Video/Picture
Scoring sheet/Tables

MAC Upper limbs
and back

X – X Visual assessment
Scoring sheet

ART Upper limbs X X X Visual assessment
Scoring sheet

OWAS Whole body X – X Visual assessment
Scoring sheet

PATH Whole body X – X Visual assessment
Video/Picture
Data collection sheet

QEC Upper limbs
and back

X X X Visual assessment
Scoring sheet

Table 1: Comparison of the assessment methods to evaluate workers postures in their
workplace.
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3. Biomechanical measurement devices208

Biomechanical assessments based on visual observations (either in real209

time or using video recordings) are not accurate and precise. In terms of210

accuracy, a difference of ten degrees in a posture is not easily noticeable while211

observing a worker in real time. Precision, or repeatability or reproducibility,212

refers to how much measurements produce the same results when repeated213

numerous times by the same or different assessors (Li and Buckle, 1999)214

— note that Li and Buckle (1999) refers to this reproducibility criterion as215

reliability but we find this term too vague, confusing. Visual measurements216

are well-known to be imprecise, particularly when conducted by different217

assessors.218

Accurate and precise results can be better achieved by means of (modern)219

measuring devices, facilitating experts’ diagnostics. Section 3.1 provides a220

general overview of measurement devices that have been developed over time221

for biomechanical analysis. Then, Section 3.2 focuses on the devices that have222

been more specifically considered in the construction sector. Sections 3.1 and223

3.2 both particularly investigate the recent development and increasing usage224

of IMUs. Finally, Section 3.3 summarizes these previous works, identifying225

limitations and specifying a need.226

3.1. Overview227

Figure 4 presents the evolution of measuring instruments used for biome-228

chanical analysis. Tapes and goniometers (West, 1945; Robson, 1966; Miller,229

1985) are the most simple instruments and have been used clinically for cen-230

turies to register linear movements and rotations. However, since they have231

to be operated by the assessors, employing these instruments is time con-232

suming and very intrusive (i.e. leading to motion restrictions or discomfort),233

preventing their use outside controlled, clinical environments.234

Further progress in biomechanical measurement has only really been made235

since the mid-1900s. Tracking devices driven by analog circuits were de-236

veloped in the 1970s (Flowers, 1976) and by digital/analog converters on237

computers in the following decade (Miall et al., 1985). These devices have238

provided more precise and rapid results, making the analysis of movement239

patterns easier. In the early 1990s, Marras et al. (1993) used an electrogo-240

niometer to evaluate WMSD risks with focus on LBDs, while Nimbarte et al.241

(2010) recently used electromyographic (EMG) systems to study the major242

neck muscles in handling and lifting tasks. Also Jia et al. (2011) proposed243
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Figure 4: Timeline of measurement solutions for biomechanical analysis.

the use of EMG devices to predict lower lumbar region loads during carrying,244

erecting, lifting and moving tasks. These devices delivered improved levels245

of wearability and reduced intrusiveness compared to previous technologies,246

although these were still far from ideal.247

Various authors have carried out biomechanical analyses by means of248

vision-based motion tracking systems that track the body parts with or with-249

out the help of markers attached to those parts (Ray and Teizer, 2012). For250

example, as mentioned in subsection 2.1, Li and Buckle (1999) used a vision-251

based tracking system to produce the QEC tool for assessing the movements252

of workers. Systems based on electro-magnetic fields can similarly be used as253

alternatives to vision-based motion tracking systems (Wong and Lee, 2004;254

Theodoridis and Ruston, 2002; Hwang et al., 2009). Vision and electromag-255

netic systems can be less intrusive than previous technologies because they256

work wirelessly. However, this is achieved at the cost of significant external257

infrastructure, (e.g. calibrated camera network) which prevents setup outside258

dedicated environments.259

Nowadays, the reduction in size of electronic devices (e.g. microelectro-260

mechanical systems (MEMs)) has allowed the creation of small and wearable261

sensors which can register the movement of different parts of the body. These262

devices, when integrating sensors such as accelerometers, magnetometers and263

gyroscopes, are called Inertial Measurement Units (IMUs) and enable the264

measurement of acceleration, velocity, orientation, and the Earth’s gravita-265

tional forces and magnetic fields in real time. These capabilities have raised266

significant interest among researchers aiming to measure postures and body267
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motions in various contexts, from daily activities (e.g. walking, running and268

sitting) to complex work-related tasks (e.g. climbing, hammering and lifting).269

The rest of this section reviews the already extensive literature on the use of270

IMUs for posture and body motion measurement.271

One of the initial areas of investigation for the application of IMUs has been272

gait analysis. Simcox et al. (2005) study the movement of lower limbs and273

trunk during walking and sit-stand trials. They compare the angle measure-274

ments calculated by a camera motion analysis system and those inferred from275

IMUs, and conclude that these sensors are accurate to measure trunk and276

lower limbs in real time. However, in their system the sensors were wired to277

a hand-held computer which is clearly invasive and would prevent its usage278

by workers. Recently, Novak et al. (2014) have presented an algorithm for279

detecting turns during walking activities by means of a wireless and wearable280

sensors network. The authors also reflect upon the optimal position of IMUs281

to evaluate such movements.282

Karantonis et al. (2006) classify different postural orientations (i.e. pos-283

sible falls, lying, sitting, standing or walking) and the transitions between284

those by studying data from a small accelerometer worn on the waist. Van-285

veerdeghem et al. (2014) have recently proposed a wearable wireless body286

sensor network integrating four IMU sensors into a firefighter garment to287

control the trunk movements and detect whether a person (in fact, up to288

four people) is walking, running or lying.289

Other daily activities, such as morning and eating tasks (e.g. dressing,290

breakfast, brushing teeth or combing hair) can be controlled for disorder291

evaluation or rehabilitation. For example, Luinge et al. (2007) track arm292

kinematics by means of IMU devices. They compare the obtained results293

with the reference values determined by a vision-based motion tracking sys-294

tem, concluding that the accuracy of their system may be sufficient for the295

assessment of activities of daily living. In (Yang et al., 2008), a learning296

algorithm is proposed to recognize scrubing, vacuuming or brushing teeth in297

data obtained from an accelerometer worn on the dominant wrist.298

Sport activities are also studied by means of accelerometers and IMUs.299

Parkka et al. (2006) recognize the sport a person is practising by means of300

a wireless body sensor network integrating more than ten different sensors301

(e.g. IMU, GPS, light sensors or microphones). And Namal et al. (2006)302

analyse soccer actions (walking, jogging, passing and dribbling) in data from303

twelve wireless accelerometers located on the legs, arms, waist and head, to304
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establish a soccer gait pattern recognition system.305

In the context of work, maintenance or assembly tasks have mainly been306

considered. Lukowicz et al. (2004) evaluate different working processes in a307

wood workshop. In this work, the user wears a system consisting of three308

accelerometers (two on the dominant arm and one in the other) and two mi-309

crophones (wrist and chest), and certain operations are recognized by means310

of correlation between frequency and intensity of sounds and the user’s mo-311

tion. The system as presented is however somewhat intrusive because the312

user has to wear a computer attached to their trunk. In (Zappi et al., 2008),313

tasks related to a car assembly line are recognized in data acquired by ac-314

celerometers placed on the workers’ arms. Similarly, Koskimaki et al. (2009)315

present a work in which hammering, screwing and drilling operations are rec-316

ognized by analysing the acceleration and angular speed from an IMU sensor317

located on the wrist.318

3.2. In construction319

As mentioned earlier, construction is a sector particularly affected by320

work-related injuries, with WMSDs being a recurring problem which has321

contributed to create a bad image of this industry. Due to the high rate322

of WMSDs, the control of activities carried out by construction workers has323

attracted research interest in recent years.324

Alwasel et al. (2011) present the prototype of a magneto-resistive system325

to measure joint angles and they test it for shoulder movements. In (Alwasel326

et al., 2013), they propose another solution to register different angles by327

mounting an optical encoder to an exoskeleton. This system can be used to328

measure shoulder, elbow and knee joint angles. But the size of the system329

makes it rather intrusive, and thus does not allow workers to wear it over330

long periods of time such as during entire working days.331

Nimbarte et al. (2010) study neck disorders amongst construction workers332

by means of EMG systems wired to a computer, and conclude that lifting333

and holding loads at shoulder height affect neck muscles and can be a source334

of WMSDs. Unfortunately, because they have to be fixed directly to the skin,335

EMG sensors are somewhat intrusive. Furthermore, as presented the system336

is not wearable. In a similar manner, Jia et al. (2011) propose a method337

based on EMG systems to evaluate the movements and efforts perfomed by338

the lower back in activities related to prefabricated panels erection. Although339

EMG and force measurements provide direct measurements of muscle activa-340

tions and the forces involved, EMG systems may be considered as intrusive341
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(as noted above) and cannot be used outside the laboratory set up or in a342

real work site.343

Joshua and Varghese (2011b) propose to use video cameras to record the344

movement of construction workers on site and conduct an initial study of345

the movements of arms and waist to determine the appropriate location of346

accelerometers to track those body parts. Ray and Teizer (2012) propose347

to use depth sensors (also called range cameras) to study the posture of348

construction workers and classify their movements as ‘ergonomic’ or ‘non-349

ergonomic’. Unfortunately, like video camera -based systems, the field of350

view and depth of current range cameras makes this system only usable for351

the study of stationary activities. Furthermore, range cameras are sensitive352

to varying lighting conditions, which means that the system should preferably353

be used indoors.354

Accelerometers and IMUs are increasingly being promoted in various355

studies (Wang et al., 2015). Kim et al. (2011) present a load measuring356

tool for construction workers based on four accelerometers located on the357

arms. The size of this wired solution makes the system intrusive and diffi-358

cult to wear, and so cannot be considered for long-term usage. Jebelli et al.359

(2014) propose to use an IMU sensor attached to the ankle to characterise the360

fall risk of workers on the jobsite and prevent accidents. Although focused361

on productivity assesssment, Joshua and Varghese (2011a) present a system362

that classifies masonry activities (fetch and spread mortar, lay bricks, and363

filling joints) by processing acceleration data from two accelerometers placed364

on the waist of bricklayers. Finally, in their most recent work Joshua and365

Varghese (2014) classify the activity of experienced workers as ‘effective’, ‘in-366

effective’ or ‘contributory’ by analysing data from accelerometers located on367

the head (hardhat), arms and waist of workers.368

3.3. Summary369

This literature review shows how new technologies are facilitating body370

posture and motion measurement. The evolution of technologies has been371

driven by not only improvement in measurement accuracy and precision, but372

also reduction in intrusiveness and enhanced wearability. A large majority of373

construction-related studies reported to date acquire data using systems that374

are either intrusive or not sufficiently wearable, and so can only be used for375

assessing stationary activities (even in somewhat ‘controlled’ environments),376

over short periods, and often in supervised manners (the subjects are con-377

stantly aware of being observed). Yet, it would be desirable to have body378
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posture and movement measurement systems that are sufficiently wearable379

and non-intrusive to enable their use over long periods of time, ubiquitously380

(i.e. anywhere on any jobsite) and without physical external presence.381

IMUs offer great potential in all these aspects, in addition to data quality,382

robustness and low cost. As a result, as reported above and in (Wang et al.,383

2015), these devices are increasingly being promoted in various studies. Yet,384

the literature review also shows that, while some initial works have been385

reported on the use of IMUs for tracking the motion of construction workers386

in the fields of productivity or health, no work to date has been conducted387

to assess body posture or motion more completely to reduce WMSDs.388

In the remaining of this article, we present a scalable IMU-based wearable389

system with a low level of intrusiveness and real-time processing that has the390

potential to fill these gaps. The system is developed with the aim of delivering391

continuous WMSD risk assessment over long periods of time and for non-392

stationary work activities. The proposed system, detailed in Section 4 below,393

differs from that of Namal et al. (2006) in that it does not use accelerometers394

only, but IMUs that integrate various motion sensors delivering more precise395

motion data. Furthermore, the system is developed entirely in-house, which396

offers great flexibility to shape it to varying needs, including integrating397

sensors other than biomechanical ones. In that sense, our system resembles398

that of Parkka et al. (2006), but their focus is on sport biomechanics while399

we focus on worker biomechanics for WMSDs risk assessment.400

This work also differs from that of Joshua and Varghese (2011a, 2014) who401

focus on productivity. In fact, we note that the biomechanical measurements402

required by WMSDs risk assessment need to be much more precise than those403

required for their productivity assessment.404

4. Real-time and automated assessment of construction work pos-405

tures. A new system406

We present the Activity Tracking with Body Area Network (AT-BAN)407

system, a novel wearable system that aims to quantitatively, accurately and408

ubiquitously measure the postures and body motions of workers, in order to409

detect potentially unhealthy ones. Following the original concept presented410

in (Sivanathan et al., 2014), this system operates around a cyber-physical411

body area network with real-time activity tracking capabilities. This system412

is unobtrusive, wireless and wearable, and is primarily designed to operate413
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autonomously. We foresee that it could first be used to augment the ob-414

servations of trainers in colleges, through both individual assessments and415

benchmarking, but it is not unreasonable to consider that such a system416

could be used by workers to autonomously monitor themselves on actual job417

sites over long periods of times (e.g. entire workdays). This would provide418

an opportunity for life-long training.419

An overview of the AT-BAN system is given in Section 4.1, and its dif-420

ferences with other measurement systems (strengths and shortcomings) are421

further discussed. Results of experiments carried out so far are then reported422

and discussed in Section 4.2.423

4.1. System Overview424

As illustrated in Figure 5, the AT-BAN architecture is a generic infras-425

tructure that can accommodate any type of sensors and devices. The low-426

level technical features of the AT-BAN system, such as connectivity, interfac-427

ing and synchronisation, are built upon the UbiITS framework (Sivanathan428

et al., 2013; Sivanathan, 2014).429

Wearable, wireless IMU devices are the basic blocks of the version of430

the AT-BAN system reported in this article. These proprietary devices of431

dimensions 6cm × 4cm × 1.5cm contain sensors (accelerometer, gyroscope,432

and magnetometer), a micro-processor, components for wireless transmission,433

built-in storage and power supply (Figure 6). The sensors enable the real-434

time measurement of acceleration, angular velocity and heading in 3-axes.435

This data can be streamed wirelessly in real-time to a work station where436

it is analysed, also in real-time, by algorithms that aim to infer parameters437

related to the physical motion of limbs (speed, displacement, joint angles,438

inclination, even force and torsion), recognize specific motions of interests,439

and characterise them with regard to their severity in terms of body health.440

The number of sensors and sampling frequency are variable and only limited441

by the maximum available bandwidth of the wireless network. Our current442

system can for example comfortably manage 10 sensors at a sampling rate of443

50Hz, which would enable full body tracking. Furthermore, our sensors are444

powered by rechargeable batteries that can last for a minimum of 8 hours,445

which means that the system can be used to track the activity of workers446

over entire workdays.447

As stated in previous sections, the body parts most affected by injuries448

among construction workers are: back, neck and shoulder, hands and wrists449

and knees. We thus propose to attach the sensors to the limbs and back.450

16



Figure 5: AT-BAN infrastructure and parameters obtained from the sensors. For the sake
of simplification, the sensors are shown attached to the worker’s garment. In practice,
IMUs should be worn tight to the body to avoid errors resulting from the slack of the
overlay garment.

Figure 6: Wearable device attached to the wrist of the trainee.

We currently attach them by means of elastic belts, as illustrated in Figure451

7. Four sensors placed on the arms (i.e. two on each arm) would provide452

information about reaching loads and identify if the user is working overhead.453

One sensor on the back and two sensors on the shins would provide sufficient454

information to distinguish squatting and stooping postures.455

The capacity of our system to process data in real-time supports the de-456
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Figure 7: Placement of the sensors on the body of the user.

livery of feedback to workers at various frequencies most appropriate to the457

context, e.g. in real-time or on a daily basis. For instance, the feedback can458

be in the form of an instantaneous alert (e.g. a warning beep or vibration), or459

else a summary report could be provided at the end of a work session, sum-460

marizing statistics about the occurrences of “unhealthy” motions detected461

by the system. In the experiments shown in Figures 10 and 11, only the462

summary feedbacks were provided, as the instantaneous alert feature was463

not required on this instance. Nonetheless, the processing of the data is con-464

ducted as if it is provided in real-time, which naturally enables the generation465

of instantaneous alerts.466

This system presents multiple advantages over conventional vision-based mo-467

tion analysis systems. Predominantly, vision-based systems are restricted to468

a capture scenario and affected by lighting and occlusions, whereas the AT-469

BAN can operate in any work space, i.e. work sites with harsh conditions470

and limited visibility. Although IMUs suffer drifts over time when used with471

global coordinates (i.e. with a fixed external reference) and vision-based sys-472

tems do not present this issue, IMUs produce better accuracies when used473

for relative measurements (i.e. using two IMUs), such as instantaneous accel-474

eration, change of speed of a limb or joint angle of a hand/leg. Our system475

is based on the analysis of those relative motion measurements.476
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4.2. Evaluation and Preliminary Results477

In an initial evaluation of the proposed system, we have designed a simple478

experiment to assess lifting-related motions and postures, more specifically479

stooping and squatting. As mentioned earlier, the low back and legs play480

an important part in these motions, and two posture variables particularly481

need to be measured to detect and recognize them: the angle rotated by the482

back of the user on the sagittal plane, αB, and the angle(s) described by the483

leg(s), αL (see Figure 8). Our system calculates these (and other) angles by484

combining acceleration and velocity data provided by the accelerometers and485

gyroscopes of the IMUs located in the low back and legs respectively. The486

IMUs’ magnetometer information is also used to compensate for the effect of487

magnetic distortions (Madgwick et al., 2011).488

Figure 8: Illustration of the back angle (αB) and leg angle (αL) considered for detecting
and distinguishing stooping and squatting motions.

Table 2 summarizes the criteria — i.e. thresholds for αB and αL — em-489

ployed here to detect and distinguish stooping and squatting motion/postures.490

These thresholds have been defined in an ad-hoc way. While they have worked491

well in our experiments, when used in practice they should be revisited taking492

into consideration expert opinion. Note that we do not distinguish just two493

postures (squatting and stooping) but also a third one that refers to some494

form of ‘combination’ of both (where the user partially stoops and squats),495

a situation likely encountered in practice.496

As illustrated in Figure 9, different subjects were solicited to lift several497

concrete blocks located on the floor and place them on a desk at knuckle498

height. The size of the blocks was 10 × 10 × 10 cm and the weight 2 kg.499

Each participant was asked to repeat this task several times: some of them500
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Trunk
movement

Leg movement Pose Code

20◦ ≤ αB

0 ≤ αL < 30◦ Stooping

30◦ ≤ αL
Squatting with back

bending

0 ≤ αB < 20◦

30◦ ≤ αL
Squatting without back

bending

0 ≤ αL < 30◦ Other

Table 2: Angle ranges for detecting and distinguishing squatting and stooping mo-
tions/postures.

on instinct and other ones by flexing their legs and keeping the load close to501

the body, as manuals advise (National Institute for Occupational Safety and502

Health, 2007).503

Figure 9: Lifting movement executed by a user.

Figure 10 shows the results for a 40-second recording during which sev-504

eral liftings were conducted. The upper graph shows the value of αB and505

the lower graph illustrates the angle described by the leg, αL. To facili-506

tate the understanding of the performance results, and as proposed in other507

previous assessment tools, we code the results by means of the universal508

traffic light coloring system. A green segment corresponds to a properly ex-509

ecuted movement (i.e. squatting without significant back bending), the red510
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movements require prompt corrective action (i.e. stooping), and the yellow-511

marked movements should be examined further (i.e. intermediary combina-512

tions of squatting and stooping). The results in Figure 10 show that the513

back and leg sensors together provide discriminatory information for both514

the detection and distinction of squatting and stooping motions/postures —515

although, as shown later, that discrimination would be further strengthened516

by considering the motion data from all tracked body parts.517

Figure 10: Interface of the software analysing the motions of construction workers. The
upper graph shows the angle described by the back of the user on the sagittal plane, αB ;
the lower graph illustrates the angle rotated by the leg, αL.

The positive results obtained with that first experiment have led to the518

setup of a second set of experiments conducted in the more realistic context519

of a training college, with trainees performing their normal training activities520

over 15-minute periods. These experiments were aimed at better assessing521

the detection and classification performance of the proposed system. Fur-522

thermore, to improve our assessment and also demonstrate to users (e.g.523

trainees, assessors) the potential and performance of our system, we have524

video-recorded the trainees and synchronised the videos with the AT-BAN525

motion data.526

Figure 11 shows the right leg and back motion data for a trainee carrying527

out paperhanging works. As can be appreciated in the top left image (ex-528

tracted from the synchronised video) and marked with a blue rectangle in529

the graphs, a stooping motion is correctly recognised while the trainee was530
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indeed stooping. It is also worth noting that the trainees reported that they531

quickly “forgot” about the systems, which indicates that they did not find532

them intrusive to conducting their work effectively and efficiently.533

While the system showed good performance in terms of false negative534

(i.e. no stooping and squatting motions were missed), many more false posi-535

tives were noticed. As a typical example of such false positive, the top right536

image of Figure 11 illustrates a situation where the system wrongly detected537

a bending motion when the trainee was in fact standing up but with a knee538

flexed on a bench. The reason for this error (which constituted the wide539

majority of the experienced false positives) is that the experiment was car-540

ried out using just one leg sensor worn on the right leg (i.e. with no sensor541

worn on the left leg). This showed that one sensor was clearly not sufficient542

and that squatting/stooping motions should be detected by considering the543

motions of both legs. As mentioned earlier, our infrastructure is scalable,544

being able to simultaneously consider many sensors; future iterations of the545

above experiments will thus be conducted with more sensors simultaneously546

capturing motions from the two legs and the back (as well as the arms and547

head).548

As discussed earlier, while the current system can be used to provide549

feedback on individual movements, the assessments of all motions can also550

be aggregated to generate a global performance over a defined period, such551

as a workday. In the lower part of Figure 11, a tachymeter-type diagram552

employing a colormap based on the same traffic light colors as earlier is553

shown, that could be used to provide overall performance information over554

an entire day (e.g. average score). Projections of the number of detected555

motions (here stooping and squatting) for an entire working day are also556

provided.557

5. Conclusions558

Proper postures and body motions on the jobsite help workers maintain559

a good health and improve their well-being. They prevent the appearance560

of WMSDs and other work-related illnesses, avoiding days away from work561

or days with modified task, which consequently enhances performance and562

saves money.563

Currently employed methods are often based on visual observations (in-564

situ or post-evaluated using videos) which is not very acucrate and precise.565

Research has been conducted to replace or supplement visual observations566
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Figure 11: Illustration of the evaluation of the squatting and stooping motions/postures
of a paperhanging trainee conducting normal training activities in a college over a 15-
minute period. Frames from a synchronised video recording are used to better visualise
and validate the performance of the motion detector and classifier.

with more accurate body posture measurement devices but many of the re-567

viewed works used systems that are either not wearable, invasive and/or568

infrastructure-intensive, possibly requiring usage in controlled environments.569

More recently, the development of small IMUs has open the possibility of570

developing wearable systems that are not invasive and so could be employed571

for reliable assessments over long periods of times and in diverse working en-572

vironments. However, no work seems to have yet focused on developing and573

using such systems for WMSD risk assessment among construction workers.574
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In this article, we present a novel wearable wireless system based on IMUs575

which provides non-invasive, long-term and ubiquitous tracking of body pos-576

tures and motions. The data captured is processed in real time to recognize577

certain postures and evaluate them.578

Experiments have been reported that have focused on the study of low579

back and legs for tracking the lifting-related motions of squatting and stoop-580

ing. This preliminary validation of our system was conducted in our lab-581

oratory as well as with actual trainees in their college over periods of 15582

minutes and more. The results are very encouraging, so future work will aim583

at assessing the system in real work environments (i.e. on actual jobsites)584

and over entire working days. Furthermore, future work will attempt to cal-585

ibrate the system with the help of experts to characterise various motions586

of interest (e.g. lifting), and take into account not only posture characteris-587

tics (i.e. angles, distances) but also motion characteristics such as speed and588

acceleration (which is readily available from the sensors).589
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