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Abstract 8 

The collection and analysis of data on the three-dimensional (3D) as-built status of large-9 

scale civil infrastructure—whether under construction, newly put into service, or in operation—10 

has been receiving increasing attention on the part of researchers and practitioners in the civil 11 

engineering field. Such collection and analysis of data is essential for the active monitoring of 12 

production during the construction phase of a project and for the automatic 3D layout of built 13 

assets during their service lives. This review outlines recent research efforts in this field and 14 

technological developments that aim to facilitate the analysis of 3D data acquired from as-built 15 

civil infrastructure and applications of such data, not only to the construction process per se but 16 

also to facility management—in particular, to production monitoring and automated layout. This 17 

review also considers prospects for improvement and addresses challenges that can be expected 18 

in future research and development. It is hoped that the suggestions and recommendations made 19 

in this review will serve as a basis for future work and as motivation for ongoing research and 20 

development. 21 
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1. Introduction 25 

Advancements in on-site spatial survey technologies (e.g., photo/video-grammetry and 26 

terrestrial laser scanning) enable more efficient acquisition of 3D data on as-built civil 27 

infrastructure (hereinafter referred to as “as-built data”) than is possible with traditional manual 28 

techniques. In this review, the term as-built refers to either the actual state of an entire facility or 29 

one of its constituent components at the completion of construction, or to the actual state of a 30 

built asset at any time during its life cycle, particularly during its service life. Three-dimensional 31 

as-built data acquired from civil infrastructure have been used to establish geometric properties 32 

of entire facilities and their constituent components. More recently, such data have come to be 33 

regarded as a tool to be utilized for managerial purposes at various points in the life cycle of a 34 

project: during construction, upon completion of construction, and during operational and 35 

maintenance phases relevant to the civil engineering field. 36 

For purposes of on-site dimensional quality control, progress tracking, and inspection, one 37 

particularly important application of as-built data in the construction phase is production 38 

monitoring, which entails making comparisons of the actual (“as-built”) state of a project with 39 

the “as-designed” state defined in the contractual agreement. Examples of research studies in this 40 

area include proactive on-site tracking of the physical progress of construction activities by 41 

comparing 3D as-built data acquired on the site of a facility under construction with the design 42 

information embedded in the building information model (BIM) (e.g., [1–11]). 43 
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There are several reasons why it is so important—indeed, vital—for researchers and 44 

practitioners to develop new methods and technologies for use in production monitoring. For 45 

starters, the design documents may not provide complete details of a planned facility, leaving 46 

some aspects thereof to the owner and the contractor to decide later. Because of such delayed 47 

decisions, it can be difficult if not impossible to adequately record the as-built condition of an 48 

entire facility or of one of its constituent components within the as-built documentation. Such 49 

situations are particularly common in the case of mechanical, electrical, and plumbing (MEP) 50 

systems that are not fully designed (e.g., those whose characteristics are specified in only 51 

rudimentary form, such as via line sketches) [9,10]. In addition, it is sometimes difficult to 52 

adequately track and record (within the as-built documentation) changes based on conscious 53 

decisions that are made during construction and hence could yield a final product that deviates 54 

from the as-designed state. Finally, it can be even more difficult to adequately track and record 55 

(in the as-built documentation) deviations that are more subtle and are not the results of 56 

conscious decisions (e.g., deviations due to poor workmanship). 57 

Another important aspect of the construction, operation, and maintenance phases of civil 58 

infrastructure is automated layout. The Oxford English Dictionary defines layout as “the way in 59 

which the parts of something are arranged or laid out.” The Collins English Dictionary defines 60 

layout, in its technical sense, as “a drawing showing the relative disposition of parts in a machine, 61 

etc.” In this review, the term automated layout is used to mean the process of automatically 62 

determining geometric properties (dimensions, shape, and 3D position (location and orientation)) 63 

and other semantic (real-world) attributes of individual components of a structure, as well as the 64 

relationships between them, from 3D as-built data. 65 
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Automated layout is used for documentation purposes, such as in the preparation of a 66 

contractual agreement that must be delivered by the contractor to the owner—that is, a package 67 

that contains all the pertinent as-built information, particularly CAD drawings. Automated layout 68 

is also used for purposes of facility management, to record and update the status of the built 69 

assets. Some studies have focused on transforming 3D as-built data acquired from a facility into 70 

3D structured or object representations, such as CAD models, in order to better illustrate the as-71 

built conditions (e.g., [12–16]). Such representations or models can then be used as the basis for 72 

making managerial decisions (e.g., on repairs and maintenance). 73 

Recording of information on the as-built status of individual components of a facility is 74 

needed, because the as-designed state, such as CAD drawings or early component selections 75 

made by the design team, may not correspond to the infrastructure actually produced. This could 76 

be due to contractors (for the initial construction or for subsequent add-ons or modifications) 77 

either not adequately and fully capturing the state of the facility as built, not building precisely to 78 

design, or handing over the design documentation without fully communicating that the asset 79 

was not built as designed. Regardless of the reason for discrepancies between the as-built state 80 

and the as-designed state, an aggravating factor is the owner’s potential lack of control over the 81 

as-built information. Even if an accurate 3D as-built layout of the facility is produced—whether 82 

after the construction phase, in the case of new construction; or after a renovation, upgrade, or 83 

remodeling of part/all of the facility; or after replacement of one or more of its constituent 84 

components—the original as-built layout must be modified on a timely basis to reflect and 85 

update the state of the facility. 86 

Situations such as the ones described above have created a need for methods and 87 

technologies that enable the robust, efficient, and cost-effective acquisition of as-built data on 88 
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demand, and subsequent processes for the extraction of the valuable as-built information by 89 

construction professionals and facility managers. For this reason, methods for acquisition of such 90 

data through on-site surveys and the extraction of valuable information—to be used for 91 

production monitoring during the construction phase, and for automated layout during the 92 

construction, operational, and maintenance phases—have been investigated by researchers and 93 

practitioners in the civil engineering field. 94 

This review provides an extensive survey of the technological advancements that have made 95 

it possible to extract and process valuable as-built information for purposes of production 96 

monitoring and automated layout. Existing research efforts in this area are outlined in Section 2, 97 

and efforts by practitioners are discussed in Section 3. Areas in which further developments are 98 

needed are summarized in Section 4. 99 

 100 

2. Review of Existing Research 101 

The acquisition of as-built data is especially useful in the civil engineering field, where it 102 

aids in control/verification of the quality of civil infrastructure—via analysis of deviations 103 

between as-built and as-designed structures—and in monitoring of progress on a project. Another 104 

practical application is the production of as-built drawings, where it facilitates the determination 105 

and documentation of as-built layout. Two types of non-contact spatial survey technology have 106 

recently made it possible to efficiently acquire as-built data: those based on photo/video-107 

grammetry (image-based technologies) and those based on terrestrial laser scanning (range-based 108 

technologies) [17]. With either of these types of survey technology, as-built data can be acquired 109 

by capturing the shape and structure (i.e., spatial coordinates) of an object in point-cloud format 110 

[18]. This section presents an extensive review of recent research into the analysis and 111 
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application of collected 3D data on as-built civil infrastructure for purposes of production 112 

monitoring and automated layout. 113 

 114 

2.1. Production Monitoring 115 

Acquisition of 3D as-built data via photo/video-grammetry and terrestrial laser-scan surveys 116 

has led to automated quality assessment of construction projects, with a focus on dimensional 117 

compliance of structural components [19], tracking of progress on individual structural 118 

components [1–8,11], dimensional compliance of MEP systems [20], tracking of progress on 119 

MEP systems [9,10], and inspection tasks, especially for surface flatness [21]. 120 

 121 

2.1.1. Dimensional Quality Control of Structural Framing Work 122 

Bosché [19] proposed a method for automated recognition of structural components that are 123 

designed in 3D CAD from 3D point clouds obtained at the building construction site. A point-to-124 

point matching approach is used, and registration is performed with an iterative closest point 125 

(ICP) algorithm. Once the registration between 3D CAD models of structural components and 126 

3D point clouds is completed, a similar ICP-based registration algorithm is used to calculate the 127 

poses of models of structural components. These as-built poses are then used to automatically 128 

control the compliance of the project with respect to the corresponding dimensional tolerances 129 

(see Fig. 1). Specifically, the differences between the as-built and as-designed dimensions 130 

(within and between objects) are calculated and compared to their corresponding tolerances 131 

defined in the project specifications, which may be specific to the project or refer to industry 132 

standards such as MNL 135-00 [22] and AISC 303-05 [23]. 133 

Fig. 1. 134 
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2.1.2. Progress Tracking for Structural Framing Work 135 

2.1.2.1. Permanent structural work 136 

A decade ago, Shih and Wang [24], Akinci et al. [25], and Shih and Huang [26] proposed 137 

methods for quantifying as-built structural progress by comparing differences between the actual 138 

work done on the construction site and the original construction schedule. For this purpose, they 139 

proposed the use of a 3D point cloud acquired by terrestrial laser scanning and a 4D (3D + time) 140 

building information model that represents the original building design and construction 141 

schedule. Although the differences were identified manually and visually under this scan-versus-142 

BIM framework at the time of the study, research has enabled this process of construction 143 

progress tracking to advance to the point where it can now be automated. 144 

Bosché and Haas [1] and Bosché et al. [2] proposed methods for automated recognition of 145 

structural components that are designed in 3D CAD from 3D point clouds. In their earlier work, 146 

the as-planned 3D CAD model was converted to a point cloud model. Using point-recognition 147 

metrics, correspondences between the as-planned and as-built models were identified, and the 148 

progress on the project was able to be ascertained. In the study by Bosché et al. [2], they 149 

introduced an object-surface recognition metric that achieves high precision and recall on 150 

structural steel buildings. 151 

Golparvar-Fard et al. [3,27] proposed a method for calculating the locations and orientations 152 

of construction site images from the images themselves as well as by 3D as-built data acquisition 153 

based on photogrammetry. With this method, 3D as-built data can be superimposed on as-154 

planned models. Also, as-built progress can be quantified by registering construction site images 155 

in a virtual as-planned environment and analyzing the registered images—and then using the as-156 

planned 4D model as a baseline for progress tracking. The results of comparisons of as-built and 157 
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as-planned progress are represented in a 4D augmented reality (D4AR) environment. 158 

In a later study, Golparvar-Fard et al. [5] proposed a method of progress measurement that 159 

compares construction site images acquired daily with a 4D BIM. In this method, an updated as-160 

built point cloud is generated in 4D (3D + time) from the latest images by use of structure-from-161 

motion, multiview stereo, and voxel coloring and labeling algorithms. Then an industry 162 

foundation class (IFC)-based BIM is registered with the updated as-built point cloud. Next, a 163 

Bayesian probabilistic model-based machine-learning method is used to measure physical 164 

progress on the project, which can be represented in D4AR, as illustrated in Fig. 2. 165 

Fig. 2. 166 

Still another method of progress monitoring was devised by Son and Kim [4], who used an 167 

automated 3D method of recognition and modeling of structural components that employs color 168 

and a 3D point cloud acquired from a stereo vision system. The data processing first relies on 169 

color features to effectively extract information on structural components by employing color 170 

invariance, 2D object segmentation, median filtering, and flood fill operation. That information 171 

is then utilized to extract the 3D coordinates of each color feature. The final step in the proposed 172 

method is the use of the resulting 3D point cloud to generate matching 3D as-built CAD models 173 

that have been converted to STL format, which enables project participants to automatically 174 

assess project progress. 175 

Turkan et al. [6] developed an automated 4D object-oriented progress-tracking system to 176 

efficiently update the construction schedule through the use of a 3D CAD model, schedule 177 

information found in the original plans for the project, and 3D point clouds acquired via 178 

terrestrial laser-scan surveys. In their system, 3D point clouds are registered with a 4D as-179 

planned model in the same coordinate system, in order to extract useful information on the 180 
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progress of a project. Once registered, progress measurement and schedule updating is 181 

automatically performed by recognition of as-built objects. In a later study, Turkan et al. [8], they 182 

proposed a 4D-model recognition-driven system for automated tracking of progress on steel-183 

reinforced concrete structures and steel structures that transforms objects to their earned values. 184 

Kim et al. [7] proposed a method of progress measurement that uses a 4D BIM in concert 185 

with a 3D point cloud obtained by terrestrial laser scanning. The method comprises three phases: 186 

alignment of the as-built data with the as-planned model, matching of the as-built data to 187 

information in the BIM, and revision of the as-built status. To help identify aspects of the as-built 188 

status that are inaccurate, the construction sequence—defined as the sequence-of-activity 189 

execution specified in the BIM—is first examined. Then the topological relationships among the 190 

structural components—defined as the connectivity between components which is specified in 191 

the BIM—are examined. The as-built status-revision phase results in an accurate assessment of 192 

the as-built status of the structural components, demonstrating that this methodology can be used 193 

to correctly measure construction progress (see Fig. 3). 194 

Fig. 3. 195 

 196 

2.1.2.2. Secondary and temporary work 197 

Turkan et al. [11] developed a method that can be used for tracking of progress on secondary 198 

(rebar) and temporary (formwork, scaffolding, and shoring) objects employed in structural 199 

concrete work. Previous research had shown that scan-versus-BIM object-recognition systems, 200 

which fuse 3D point clouds acquired by photogrammetry or terrestrial laser scanning with a 4D 201 

BIM, provide valuable information for tracking of construction work. However, the potential of 202 

these systems had been demonstrated for tracking the progress of permanent structures only. The 203 
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experimental results achieved by Turkan et al. [11] show that it is feasible to recognize secondary 204 

and temporary objects in 3D point clouds—and to do so with fairly high accuracy—via either of 205 

these two novel fusion techniques (see Fig. 4). However, superior results could be achieved by 206 

using additional cues such as color and 3D edge information. 207 

Fig. 4. 208 

 209 

2.1.3. Dimensional Quality Control of MEP Work 210 

Nahangi and Haas [20] proposed a method for monitoring and assessment of fabricated pipe 211 

spools using an automated scan-to-BIM registration procedure in which defects are detected 212 

through a neighborhood-based ICP algorithm (see Fig. 5). They focused on industrial 213 

construction facilities, and targeted assemblies of pipe spool in particular. This method can be 214 

employed for the automatic and continual monitoring of such assemblies throughout fabrication, 215 

assembly, and erection, thereby enabling timely detection and characterization of deviations. 216 

Fig. 5. 217 

 218 

2.1.4. Progress Tracking for MEP Work 219 

Bosché et al. [9,l0] proposed a system that integrates scan-versus-BIM and scan-to-BIM 220 

approaches for tracking of the built status of MEP work. This system, which is capable of 221 

recognizing and identifying objects that are not built at their as-planned locations (see Fig. 6), 222 

enables automated quality control and can even detect discrepancies between the as-built and as-223 

planned states of pipes, conduits, and ductwork. Such discrepancies are due to changes made in 224 

the field that either go unnoticed (human error) or are not reflected in the 3D model. 225 

Fig. 6. 226 
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2.1.5. Automated Inspection and Quality Assurance 227 

Recently, Bosché and Guenet [21] proposed a method that demonstrates the value of 228 

integration of techniques for surface-flatness control. The method employed the scan-versus-229 

BIM principle of Bosché and Haas [1] to segment a 3D point cloud acquired on a construction 230 

site, by matching each point to the corresponding object in the BIM. Using two different standard 231 

flatness-control techniques, Straightedge and F-Numbers, to measure compliance with the 232 

designed tolerances, they applied their method to a separate 3D point cloud for each floor. They 233 

found the performance of the method to be superior to traditional measurement methods in terms 234 

of both quality and efficiency, thereby validating the usefulness of as-built data acquired by 235 

terrestrial laser scanning for purposes of standard dimensional control. 236 

 237 

2.2. Automated Layout 238 

2.2.1. MEP Systems in Industrial Facilities and Buildings 239 

Because of the increasing demand for automated layout of large as-built 3D pipelines in 240 

recent years, several methods for reconstruction of 3D pipelines have been proposed. A 3D 241 

layout of an as-built pipeline at an existing plant provides detailed information on each of its 242 

distinct elements. Such a model comprises straight pipes, elbows, reducers, and tee pipes with 243 

specific diameters, lengths, orientations, and locations. Therefore, it can be used effectively 244 

during the ongoing operation, maintenance, and retrofitting of the plant facility [28,29,14]. For 245 

example, piping components are periodically renewed during preventive maintenance, and 246 

unplanned emergency repairs or replacements may be required after accidents or failures. When 247 

a single pipeline (in a network of pipelines) requires maintenance, repairs, and/or replacements, 248 

the 3D as-built pipeline layout model allows the facility manager to easily locate the pipeline and 249 



12 

ensure that it is correctly repaired and maintained [30]. Moreover, older pipes may need to be 250 

retrofitted—or new ones may need to be added—to increase production that stems from capacity 251 

expansion and/or process integration [31], which sometimes requires the paths of existing 252 

pipelines to be rerouted. In such cases, piping plans (comprising proposed diameters, lengths, 253 

and slopes, among others) should be reviewed in conjunction with the 3D as-built environment 254 

[32]. Furthermore, the location of the equipment and the surrounding environment should be 255 

taken into account. 256 

The existing research studies on reconstruction of 3D pipelines range from the development 257 

of semi-automated methods (e.g., [33,28,34,31,35]) to fully automated ones (e.g., [12–16]). All 258 

of these are based on more efficient survey techniques, such as photogrammetry and laser 259 

scanning, than are traditional manual surveys. 260 

 261 

2.2.1.1. Semi-automated methods 262 

In the case of semi-automated methods (e.g., [33,28,34,31,35]), the reconstruction of 3D 263 

pipelines is conducted in an interactive way between the user and the computer. In most cases, 264 

the user manually selects the desired portions of pipelines (straight pipes, elbows, tees, etc.) to be 265 

modeled. This process involves manual selection of vertices, centerlines, edges, or regions of the 266 

desired portions of the pipelines. Next, these manually selected features are used as input for 267 

automatic estimation of the poses of the desired portions in 3D space and for the calculation of 268 

parameters, such as their radii and lengths, that are needed to reconstruct the desired portions by 269 

computer. 270 

Veldhuis and Vosselman [28], Navab and Appel [34], and Reisner-Kollmann et al. [35] 271 

proposed semi-automated methods based on photogrammetry, which enables the reconstruction 272 
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of as-built pipelines from multiple digital images acquired from industrial facilities such as 273 

chemical processing plants, oil platforms, nuclear installations, and power plants. Navab and 274 

Appel [34] studied only the reconstruction of straight-pipe portions of pipelines. Veldhuis and 275 

Vosselman [28] proposed a method that is capable of reconstructing elbows, but they tested their 276 

method only on straight-pipe portions. Reisner-Kollmann et al. [35] proposed a method that 277 

allows for the reconstruction of entire pipelines, but in the form of tubes without boundaries 278 

between the different types of pipe (straight pipes, elbows, tees, etc.). 279 

The semi-automated methods based on photogrammetry require correspondences among 280 

vertices, centerlines, edges, or regions across multiple images in order to reconstruct the desired 281 

portions in 3D. Therefore, the user has to manually measure the edges of every straight pipe [28] 282 

or the centerline of every pipeline [35] in a series of digital images. For example, in the 283 

computation for the reconstruction process proposed by Veldhuis and Vosselman [28], every 284 

straight pipe has to be measured manually in at least four images, the minimum requirement for 285 

reconstruction of a straight pipe being that two points on the edges of a straight pipe be present in 286 

two images. In an experiment on reconstruction of 16 straight pipes, Veldhuis and Vosselman 287 

[28] actually used eight images and manually measured 256 edges (16 edges for each pipe). They 288 

recommended using even larger numbers of images and measured edges of each straight pipe in 289 

order to improve the quality of reconstruction. 290 

In the semi-automated methods based on photogrammetry, there is a primary assumption 291 

that a series of digital images is already pre-calibrated, hence these methods rely highly on pre-292 

calibration. For this calibration, markers have to be attached in advance to each of the desired 293 

portions of the pipelines to be modeled [34,35] (see Fig. 7). In addition, both intrinsic and 294 

extrinsic parameters of the cameras must be provided. These tasks, which include the 295 
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identification of correspondences of the desired portions across a number of images and pre-296 

calibration that requires extensive manual intervention, are not only time-consuming for the user 297 

but also become nearly impossible for entangled pipelines and for enormous facilities that 298 

include a large number of pipelines. 299 

Fig. 7. 300 

Because of improvements in laser scanning, Johnson et al. [33] and Masuda and Tanaka [31] 301 

proposed semi-automated methods that allow for the reconstruction of as-built pipelines from a 302 

3D point cloud acquired by terrestrial laser scanning on the site of an industrial plant. Compared 303 

with photogrammetry, laser scanning provides an explicit, dense 3D point cloud by directly and 304 

quickly measuring the 3D positions and shapes of as-built pipelines [14]. Recent advances in 305 

laser scanning have made it possible to automatically capture large-scale 3D point clouds from a 306 

broad range of areas [31]. 307 

In the method proposed by Johnson et al. [33], the user manually selects and draws 308 

rectangular regions around the portions of the pipelines to be modeled (straight pipes, elbows, 309 

tees, etc.) in a series of range images acquired from many different viewpoints. Next, smooth 310 

surface-mesh models of those regions are generated, and they are registered to a single, seamless 311 

surface-mesh model. In the mesh-generation process, the user specifies the amount of scene data 312 

to be processed, and the range image is sub-sampled for mesh generation. The registered surface-313 

mesh models for the regions of interest can be recognized once CAD drawings have been 314 

provided for each type of pipe (straight pipes, elbows, tees, etc.). However, if the desired 315 

portions differ too much from the given CAD drawings, they cannot be recognized and modeled. 316 

Finally, after the regions of interest are identified, each pipe is modeled by manually rotating and 317 

orienting it so that its actual position and orientation correspond with those of some pipe in the 318 
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given CAD drawings. 319 

In the study by Masuda and Tanaka [31], smooth mesh models are first generated 320 

automatically from a 3D point cloud. Then the portions that are missing in the mesh models—321 

because of the limited number of viewpoints or partial occlusion by a large number of objects—322 

are manually compensated for, based on the reflected images. These reflected images have the 323 

form of unit spheres, which can be converted to two types of images: a perspective image for 324 

users and a rectangular image via Mercator projection for purposes of computation. The user 325 

intuitively selects a seed region (such as one which is included in a desired portion of a 326 

perspective image), and then the corresponding pixels in the rectangular image are detected 327 

automatically. At that point, the desired portions are modeled by fitting a surface to vertices in 328 

the selected seed region. Then when the user specifies the locations and sizes of the desired 329 

portions according to the standards, the adjacent vertices that like on that surface are searched via 330 

the region-growing method (see Fig. 8). 331 

Fig. 8. 332 

A great deal of user input is involved in the semi-automated layout process. With most 333 

methods based on either photogrammetry or laser scanning, such input is available only if all of 334 

the straight pipes or pipelines are visible (i.e., nearly free of occlusion by other objects). Another 335 

inherent drawback of these methods is that the reconstruction is error-prone if the user makes a 336 

mistake or the user input is not sufficiently accurate [35]. Furthermore, methods based on 337 

photogrammetry have other, more limitations: Their use is limited to portions of straight pipes or 338 

to entire pipelines that can be modeled as tubes without boundaries between different types of 339 

pipe. Therefore, it is difficult to use them for reconstruction of an entire 3D pipeline, since most 340 

pipelines are composed of a series of straight pipes connected to one another by elbows, tees, etc. 341 
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Although the aforementioned techniques based on laser scanning represent a major step forward 342 

in terms of their capacity for reconstruction of an entire 3D pipeline, they still entail a large 343 

number of manual processes. From a practical point of view, recognizing each type of pipe from 344 

a noisy, incomplete, and enormous 3D point cloud that includes a large number of pipelines 345 

becomes nearly impossible if it has to be done in a semi-automated way with manual 346 

intervention. 347 

 348 

2.2.1.2. Fully automated methods 349 

Several research studies (e.g., [12–16]), have investigated the possibility of automatic 350 

modeling of 3D as-built pipelines. These studies have all yielded similar advancements in terms 351 

of automatic performance. 352 

Bosché [12] proposed an automated method that enables reconstruction of as-built straight 353 

and curved pipes from a 3D point cloud acquired from pipe spools that surround buildings (see 354 

Fig. 9). Bosché’s method iteratively fits and matches all cylindrical pipes by adopting the method 355 

proposed by Kwon [36]. Once that is done, two or more adjacent straight pipes are analyzed to 356 

compare their relative positions and orientations in an effort to determine how they are likely to 357 

be connected. In this way, the positions of the elbows are inferred, and the positions of some of 358 

the straight pipes that are connected to other straight pipes or elbows are corrected accordingly. 359 

Fig. 9. 360 

Rabbani et al. [13] proposed an automated method that enables reconstruction of as-built 361 

cylindrical pipes from a 3D point cloud acquired at an industrial plant (see Fig. 10). In this 362 

method, segmentation of the point cloud is performed using a smoothness constraint based on a 363 

combination of surface-normal similarity and spatial connectivity. This segmentation is followed 364 
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by an object-recognition stage based on a variation of the 3D Hough transform, which requires a 365 

5D Hough space for detection of the orientations of cylindrical objects and estimation of their 366 

radii and positions in the point clouds. Then cylindrical 3D-object models are fitted using models 367 

from a catalogue of commonly found CAD objects as templates. 368 

Fig. 10. 369 

Kawashima et al. [14] also proposed an automated method for reconstruction of as-built 370 

pipelines from a 3D point cloud acquired at an industrial plant. In their method, the entire 3D 371 

pipeline is reconstructed by automatically recognizing the type of each pipe (such as straight, 372 

elbow, or tee) and the connections between pipes. First, points on straight pipes are extracted by 373 

eigenvalue analysis of the point clouds and the surface-normal vectors. Then the radii, positions, 374 

and axes of the straight pipes are calculated using the point clouds. At that point, the connection 375 

relationships among the extracted straight pipes are determined by checking the relative positions 376 

and orientations of their axes. Based on these connection relationships, other types of pipes, such 377 

as elbows and tees, are modeled. 378 

Lee et al. [15] proposed an automated method that enables reconstruction of as-built 379 

pipelines composed of straight pipes, elbows, and tee pipes from a 3D point cloud. In their study, 380 

Voronoi diagrams are used to generate skeleton candidates for individual pipelines from the point 381 

cloud. Then extraction of skeletons from the skeleton candidates is performed using topological 382 

thinning. The extracted skeletons are segmented into their individual components, and a set of 383 

parameters for each component is calculated (see Fig. 11). 384 

Fig. 11. 385 

Ahmed et al. [16] proposed a method based on the Hough transform and the judicious use of 386 

domain constraints that can automatically find, recognize, and reconstruct 3D pipes from a 3D 387 



18 

point cloud. The core algorithm utilizes the Hough transform’s efficacy in detecting parametric 388 

shapes in noisy data by applying it to projections of orthogonal slices to grow cylindrical pipe 389 

shapes within a 3D point cloud. They considered that most of the pipes, conduits, and ducts are 390 

built orthogonal to one another and along the main axes of a building. In this way, searching in 391 

planes perpendicular to these axes for standard reference pipe diameters reduces the problem 392 

from three to two dimensions (see Fig. 12). 393 

Fig. 12. 394 

The previous methods are limited to parts of an entire 3D pipeline, for example, straight 395 

pipes, elbows, and tees in the most recent study by Lee et al. [15]. Although the study by 396 

Kawashima et al. [14] attempted to achieve an improvement in terms of the completeness of the 397 

modeled 3D pipeline layout, only 55% of the individual pipes (other than the straight pipes) were 398 

accurately modeled from their actual pipe forms. In addition, in the studies by Kawashima et al. 399 

[14] and Lee et al. [15], the detection of as-built pipelines from a 3D point cloud was performed 400 

manually before the proposed reconstruction process was initiated. 401 

Previous attempts to address this problem range from the development of semi-automated 402 

methods to assist users in a tedious manual reconstruction process to the development of fully 403 

automated methods that eliminate any user involvement. The results of these efforts have shown 404 

that the repetitive, tedious, and even trivial tasks typically performed in the manual 3D 405 

reconstruction of as-built pipelines can be eliminated by using automated approaches. However, 406 

there is still a need for an effective, fully automated 3D reconstruction method that can model an 407 

entire pipeline, irrespective of the types of its constituent parts. Specifically, as-built pipelines, 408 

though generally cylindrical, present a challenge to automatic detection because of the variety of 409 

types (shapes) and diameters of pipes and the arbitrariness of their poses. Additionally, the 410 
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incompleteness and unstructured nature of a point cloud complicates automation [16,37]. For 411 

automatic performance, algorithms must be improved to the point of being able to handle point 412 

clouds that are somewhat less than complete and to predict, extrapolate, semantically relate, or 413 

otherwise represent the parts that are occluded or missing [16]. 414 

 415 

2.2.2. Buildings 416 

Jung et al. [38] proposed a method for modeling of a semantically rich 3D indoor building 417 

layout from a 3D point cloud acquired by terrestrial laser scanning. Their method, which is a 418 

semi-automatic approach that accounts for the high degree of complexity of indoor environments, 419 

comprises three main steps: segmentation for plane extraction, refinement for removal of noisy 420 

points, and boundary tracing for outline extraction. After these steps are performed, the resulting 421 

3D indoor building models are used in conjunction with the points that were not processed in the 422 

three main steps to create manual models. With the extracted boundary lines as guides, each 423 

object and its relationship each other can easily be identified and modeled (see Fig. 13). 424 

Fig. 13. 425 

 426 

3. Commercial and State-of-the-Art Tools 427 

Currently, modeling which is done to represent the existing state of an as-built pipeline or 428 

the 3D layout of an as-built building is mostly performed manually—in an interactive manner—429 

by the user. Especially, 3D layout of as-built pipelines from 3D point clouds has been extensively 430 

investigated, and several commercially available software programs have been developed to 431 

asssit the current manual process of 3D layout. 432 
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Most providers of laser-scanning systems (e.g., Leica Geosystems and Trimble) have 433 

developed software that enables the 3D layout of as-built pipelines from 3D point clouds. For 434 

example, the latest version of Leica Cyclone (version 8.1) by Leica Geosystems provides a user 435 

interface for 3D layout of as-built pipelines that includes functions for tasks such as automatic 436 

pipe finding, region growing from selected 3D points for cylindrical objects, cylinder fitting, and 437 

generation of models from the selected 3D point clouds. With this software, models of objects of 438 

various geometric types pertinent to the 3D layout of as-built pipelines, for example, cylinder, 439 

elbow, reducing elbow, cone, torus, reducer (eccentric and concentric), and pipe tee, can be 440 

created by a semi-automatic layout process. 441 

Chunmei et al. [39] and Qiusheng et al. [40] used Cyclone (version not specified) by Leica 442 

Geosystems to model the 3D layout of as-built pipelines from a 3D point cloud. In the study by 443 

Chunmei et al. [39], the noise-removal function was used to eliminate some noise prior to the 444 

modeling. Then users manually segmented the complicated pipeline network into individual 445 

pipelines and used the cylinder-fitting function to model the layout of the various segments, 446 

which could contain both straight and bent parts. Chunmei et al. [39] remarked that with their 447 

method, prior knowledge (design data) is required if some parts of the as-built pipelines are 448 

missing in the acquired 3D point clouds on account of self-occlusion or occlusion by other 449 

objects. In the study by Qiusheng et al. [40], users manually selected 3D point clouds 450 

corresponding to the individual pipelines in a network and used the region-growing function to 451 

determine the boundary of each pipeline. After the boundaries were found, the cylinder-fitting 452 

function was used to model the pipeline layout. 453 

Trimble RealWorks provides the EasyPipe tool for modeling of pipeline layout, which 454 

extracts 3D points for cylindrical objects and fits cylinders to them. Then models of the elbows 455 
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can be aligned and connected to the models of the cylindrical pipes. 456 

In addition to Cyclone, Leica Geosystems has released several plug-in tools for 3D layout of 457 

as-built pipelines from 3D point clouds: Leica CloudWorx for AutoCAD Pro 5.0, Leica 458 

CloudWorx for Revit version 1.0.2, and Leica CloudWorx for MicroStation 4.0. By using these 459 

plug-in tools, it is now possible to import and process the 3D point clouds inside AutoCAD, 460 

Revit, and MicroStation. There are several functions that are especially useful for 3D layout of 461 

as-built pipelines, such as one that generates cylinders based on least-squares fitting from the 462 

selected 3D point clouds and one that connects cylinders with elbows. 463 

The leading 3D CAD vendors (Autodesk, Bentley, Aveva, and Intergraph) have also 464 

developed software that enables the 3D layout of as-built pipelines from 3D point clouds. One 465 

example of this is AutoCAD Plant 3D, which can be used with Kubit’s PointSense Plant add-in 466 

for AutoCAD (see Fig. 14(a)). PointSense Plant by Kubit provides several functions for pattern 467 

recognition that can identify pipelines from 3D point clouds. Then users manually model the 468 

layout of as-built pipelines by fitting CAD objects to the segmented 3D point clouds. 469 

SmartPlant 3D by Intergraph has functionality similar to that of the combination of 470 

AutoCAD Plant 3D and Kubit’s PointSense Plant add-in for AutoCAD (see Fig. 14(b)). 471 

SmartPlant 3D’s fitting function automatically calculates the best fit for cylinders from 3D point 472 

clouds that have been selected manually. In addition, the cylinders can be placed manually, and 473 

then the software calculates the orientation and extent of the cylinders by evaluating the point 474 

clouds. 475 

Fig. 14. 476 

The aforementioned programs are user-friendly tools for the 3D layout of as-built pipelines, 477 

as they provide several functions for manipulation of 3D point clouds acquired by laser scanners 478 
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and have the capability to create and modify pipeline models [39]. However, large 3D point 479 

clouds are not easily managed and processed, so they need to be divided into several smaller 480 

parts. Recently, Autodesk ReCap provided an efficient mechanism for managing such large 3D 481 

point clouds by using different file formats (e.g., RCS and RCP). 482 

The recently developed EdgeWise Plant™ (version 4.0) provides a function that 483 

automatically detects the straight sections of a pipeline and fits cylinders to them (see Fig. 15). 484 

This software is a powerful engine that can handle large 3D point clouds. However, its use is 485 

limited to only the straight sections of a pipeline, whereas an entire pipeline can include other 486 

forms of pipe. Hence, significant user intervention is required, both to identify pipes that are not 487 

straight and to uncover any undetected straight pipes that need to be modeled. 488 

Fig. 15. 489 

The aforementioned reconstruction programs are in common use but are not fully automated, 490 

as they rely on substantial operator input/intervention to model the 3D layout of an as-built 491 

pipeline [44]. Although some programs provide semi-automated functions such as region 492 

growing, the user still has to mark certain portions of pipeline manually, to indicate that they are 493 

to be modeled [45,46]. To exploit the potential advantages of obtaining a 3D layout of an as-built 494 

pipeline, it is necessary to accurately measure the dimensions of installed pipelines and 495 

efficiently model them [35]. However, marking portions of individual pipelines in an enormous 496 

and complicated set of 3D point clouds is very time consuming and labor intensive. Furthermore, 497 

it is difficult to identify individual pipelines from a 3D point cloud, because pipelines of various 498 

radii, lengths, and orientations can be installed in complex configurations. In a study conducted 499 

by Fumarola and Poelman [47], it took 15 days to model the layout of 2,602 objects (planes and 500 

cylinders) by a semi-automatic layout process. In a study by Sanders [48] of a Chevron 501 
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installation that was being revamped, 40% of the total cost of modeling of the layout was spent 502 

on data-processing labor [48]. 503 

 504 

4. Conclusions and Recommendations 505 

4.1. Summary and Discussion 506 

Over the last decade, efficient acquisition of 3D as-built data from civil infrastructure based 507 

on photo/video-grammetry and terrestrial laser-scan surveys has been a matter of increasing 508 

interest in the civil engineering field. Researchers and practitioners alike have engaged in efforts 509 

to develop semi- or fully automatic data processing methods and technologies to assist in and 510 

support the tasks of production monitoring and facility management. 511 

These efforts demonstrated that such tasks can be automated to some degree. In particular, 512 

several methods for dimensional compliance or progress tracking have been demonstrated to be 513 

applicable to work on permanent structural components, such as frames of buildings [1–514 

3,19,4,27,5–8], brick façades [27], and MEP systems [9,10,20]. Recently, the study by Turkan et 515 

al. [11] demonstrated the applicability of their method to secondary components (e.g., rebar) and 516 

temporary components (e.g., formwork, scaffolding, and shoring) of steel-reinforced concrete 517 

structures. Such advancements demonstrate the feasibility of using automated modeling to track 518 

the accuracy of progress on a construction site. 519 

In addition, several methods have been proposed for automated layout of built assets. Most 520 

of these efforts have targeted as-built pipelines in MEP systems in industrial facilities and 521 

buildings [12–16] and in indoor structures in low-rise buildings [38]. These research efforts have 522 

improved the level of automation that can be applied in the layout of certain parts of an entire 523 

facility and have expanded the types of parts that can be modeled in an automated manner. 524 
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The reviews in Sections 2 and 3 show the extent and emergence of survey technologies that 525 

aim to improve and enhance the accuracy and ease of acquiring and communicating as-built 526 

information. While these technologies have already been widely studied by architecture, 527 

engineering, construction, and facility management (AEC/FM) researchers and practitioners, 528 

further developments in the performance of such technologies are needed—particularly in regard 529 

to their robustness across different kinds of environments—for them to become widely accepted 530 

and used in the civil engineering field. Some of the existing challenges and the likelihood that 531 

future research and development will succeed in meeting them are discussed in what follows. 532 

First, combinations of different surveying technologies are expected to overcome the 533 

drawbacks of individual methods. The so-called hybrid approach combines data acquired from 534 

photo/video-grammetry and terrestrial laser-scan surveys, which has the potential for enhancing 535 

the fidelity of the measurements and hence the overall accuracy of the 3D reconstruction. Few 536 

research studies have used the hybrid approach for acquisition of as-built data on civil 537 

infrastructure (e.g., [49–52]). However, the feasibility of this approach in applications such as 538 

production monitoring and automated layout merits investigation. 539 

Second, the data acquired by photogrammetry and terrestrial laser-scan surveys can be 540 

combined with data obtained by other identification and localization technologies, including 541 

radio frequency identification (RFID) [53–55], ultra-wide band [56,57], near-field 542 

communication [58,59], wireless local/personal area network [60], and information and 543 

communication technologies such as building information modeling and mobile technologies 544 

[61–63]. For example, Valero et al. [63] proposed combining terrestrial laser scanning with RFID 545 

for the purpose of constructing basic 3D semantic models of inhabited interiors. As is well 546 

known, the segmentation and identification of objects from a 3D point cloud acquired by 547 
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terrestrial laser scanning is a challenging task. In their study, Valero et al. [63] applied RFID tags 548 

to various objects and found that they served as a valuable aid in the identification and 549 

positioning of those items. Therefore, the fusion of photogrammetry and terrestrial laser-scan 550 

surveys with data acquired by other identification and localization technologies holds promise as 551 

a source of improvements in the applications discussed above. 552 

Third, the structural components of buildings that have been targeted for automation of 553 

production monitoring thus far are frames of buildings, brick façades, and MEP systems, but 554 

automation of production monitoring of other components (substructure, foundation, external 555 

envelope, roof, internal complementary elements, finishes, and so on) needs to be demonstrated 556 

as well. In addition, despite the fact that significant progress has been made in the automation of 557 

data acquisition and processing, further progress is needed, particularly for the complete 558 

automated layout of built assets. Advancements in this area should be extended to even larger 559 

classes of structures and their constituent parts, and may benefit from further development of as-560 

built data acquisition methods. 561 

Fourth, in order for production monitoring and automated layout methods and technologies 562 

to become established practice in the civil engineering field, there must be significant 563 

improvements in the methods used for processing of the huge amounts of 3D as-built data 564 

acquired from civil infrastructure. Most civil infrastructure is large scale and complex, hence 565 

data must be acquired at dozens or hundreds of locations, and the data are usually vast, noisy, 566 

and unstructured. Thus research is needed in order to realize advancements in the speed of data 567 

acquisition, the accuracy of the models generated, and the degree of detail provided in the 568 

models. 569 
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Fifth, recent work has shown that recognition techniques based on scan-versus-BIM 570 

frameworks indeed enable the recognition of 3D objects in 3D as-built data acquired by 571 

terrestrial laser scanning, leading to progress in areas such as dimensional quality control 572 

[2,19,4,6–8,20]. Similar approaches use 3D as-built data reconstructed through photogrammetry-573 

based surveys [3,27,5]. However, the authors argue that methods based on scan-versus-BIM 574 

frameworks have not yet achieved a high level of effectiveness, and that the use of scan-to-BIM 575 

frameworks for generation of as-built 3D BIM models from 3D point clouds could contribute to 576 

overcoming this limitation. 577 

Finally, the practicality of the methods and technologies used in the generation of models of 578 

3D as-built data should be ensured. As-built data acquired from different types of civil 579 

infrastructure may have different characteristics in terms of complexity, noise level, and 580 

completeness. Hence, it is imperative that such differences in characteristics be taken into 581 

account—and that, if need be, the methods and technologies used for specific civil engineering 582 

projects be tailored to those projects. 583 

 584 

4.2. Concluding Remarks and Future Directions 585 

Academic research and industrial efforts in automation of analyzing of 3D as-built data have 586 

laid the cornerstone for future research and development, especially in terms of advancements in 587 

the efficiency of construction tasks such as production monitoring and automated layout. It is 588 

expected that such tasks can be more fully automated through academia–industry collaboration. 589 

It is also expected that future efforts will contribute to the realization of the automation of 590 

additional construction tasks, such as dismantling, renovation, and revision of existing civil 591 

infrastructure. 592 
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