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Abstract. Door detection is becoming an increasingly important subject in building indoor 1 

modelling owing to its value in scan-to-BIM processes. This paper presents an original 2 

approach that detects open, semi-open and closed doors in 3D laser scanned data of indoor 3 

environments. The proposed technique is unique in that it integrates the information 4 

regarding both the geometry (i.e. XYZ coordinates) and colour (i.e. RGB or HSV) provided 5 

by a calibrated set of 3D laser scanner and a colour camera. In other words, our technique 6 

is developed in a 6D-space framework. The geometry-colour integration and other 7 

characteristics of our method make it robust to occlusion and variations in colours resulting 8 

from varying lighting conditions at each scanning location (e.g. specular highlights) and 9 

from different scanning locations. In addition to this paper, the authors also contribute a 10 

public dataset of real scenes along with an annotated ground truth. The dataset has varying 11 

levels of challenges and will help to assess the performance of new and existing contributions 12 

in the field. The approach proposed in this paper is tested against that dataset, yielding 13 

encouraging results. 14 

Keywords. Indoor spatial data model, 3D, point cloud, door detection, building information 15 

model, scan-to-BIM, robot, indoor navigation. 16 

Highlights. 17 

 New method for door detection in coloured 3D point clouds (6D data framework) 18 

 The 6D data is obtained using a calibrated set of a laser scanner and an SLR camera 19 

with a flash 20 

 The method is robust under conditions of occlusion and non-homogeneous 21 

illumination 22 

 The method detects open, semi-open and closed doors. 23 

 Performance is demonstrated with a dataset containing various levels of challenges 24 

made public by the authors. 25 



2 

1 INTRODUCTION 26 

Door detection is a critical functionality for automatic building scanning systems. For 27 

instance, autonomous mobile robots with 3D scanners must obtain precise information on the 28 

location and state of doors (open or closed) for robust and safe navigation (e.g. passing through 29 

doors) and manipulation (e.g. opening doors by grasping handles) [1,2]. Another application 30 

is the automated generation of as-is/as-built Building Information Models (BIMs) from laser 31 

scanned data – a process commonly called Scan-to-BIM – that requires the segmentation, 32 

recognition and precise positioning of all building components, including doors [3]. Door 33 

detection has become a necessary task in both of the contexts described above, and can be 34 

made even more difficult when clutter and occlusion conditions exist. 35 

While the subject of door detection has been considered in previous research, this paper 36 

proposes a unique approach that: 37 

(1) integrates both geometric and colour information, provided by a calibrated set of 38 

3D laser scanner and a colour camera; 39 

(2) ensures reliable colour information by (a) employing a camera flash to reduce 40 

colour variations resulting from non-homogeneous illumination conditions 41 

experienced at different scanning locations; (b) detecting and correcting specular 42 

highlights that often result from the use of the camera flash; and (c) optimally 43 

merging colour information by assessing the suitability of each scanning location 44 

as regards acquiring the colour of any part of the scene; 45 

(3) presents a general solution for open, semi-open and closed doors, providing the 46 

opening angle; 47 

(4) provides the accurate size and pose of each door in the 3D world-coordinate-48 

system; and 49 

(5) is robust to clutter in the room and the resulting occlusions of the walls. 50 

As will be shown in the review of Related Works in Section 2, existing door detection 51 

methods have typically considered only one or two of those aspects. 52 

The document is organised as follows. Section 2 provides a review of the state of the art in 53 

door detection in 3D environments. Section 3 sets the general context in which the paper has 54 

to be considered, in order to enable the reader to fully understand the inputs of our approach. 55 

Our proposed approaches for specular highlight detection and correction, in addition to 56 

multiple view merging, are described in Section 4. The door detection algorithm is presented 57 

in Sections 5 and 6. The experimental work and results are reported in the long Section 7. 58 

Section 8 deals with the choice of parameters and Section 9 presents the conclusion and 59 

proposes future improvements to the method. 60 

2 RELATED WORK 61 

Door detection in reality capture data (i.e. principally 2D or 3D imaging data) has already 62 

been studied for many years. This existing pool of prior research can be divided into two main 63 

approaches based on the type of data acquisition method considered: 2D colour imaging 64 

(using digital cameras) [4–9] and 3D imaging (using laser scanners or photogrammetric 65 

systems) [2,10–20]. 66 
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Table 1 summarises the literature review by categorising the methods reviewed according 67 

to the input data considered and the applicability of the method (closed, open or semi-open 68 

doors). As can be seen, no approach has been proposed to date that has been shown to work 69 

with closed, open and semi-open doors. Our method, which is appended to the table, aims to 70 

achieve this by integrating both colour and 3D data. A detailed state of the art is presented in 71 

the following sub-sections. 72 

Table 1. Categorisation of prior work on door detection in 2D colour and/or 3D data. 73 

Method 
Input data Applicability 

2D Colour 3D Closed Open Semi-open 

[6] [7] [8] X  X   
[4] [5] [9] X  X X  
[10] [11]  X X   
[1] 
[14][18][19] 

 X  X  

[13]  X  X X 
[2] [15] [16] X X X   
[12][20] X X  X  

Ours X X X X X 

 74 

2.1 2D imaging-based methods 75 

2D colour image-based approaches take advantage of the affordability of digital cameras. 76 

Furthermore, focusing on colour (instead of 3D) may be justified by the observation that doors 77 

are often within the wall plane, where 3D data may not provide significant added value. Yang 78 

and Tian [4] and Marwa M. Shalaby et al. [5] propose an approach based on the extraction of 79 

lines and corners in the colour image, and the subsequent detection of coherent sets of two 80 

horizontal and two vertical segments making up the door frame. Because they rely on the 81 

region boundary features (i.e. colour edges) instead of region features (which are more 82 

sensitive to changes in lighting and perspective), they are able to detect doors in challenging 83 

contexts, such as glass doors. However, when some of the door edges or corners are occluded 84 

(e.g. by curtains) both approaches might fail, and be unable to obtain the correct geometric 85 

door model. Yang and Tian’s method [4] detects doors through the use of region boundary 86 

features, but does not distinguish between open and closed doors. This entails a lot of false 87 

positives (23%) in some of the challenging scenarios tested. 88 

Andreopoulos et al. [6] present a method based on the two aforementioned approaches, 89 

which requires the door to be almost contained within the view of the  camera. In addition to 90 

detecting the doorframe using geometrical features (i.e. corners and edges) in the image, this 91 

approach detects door handles using a learning algorithm trained with a large handle dataset 92 

(1,500 samples). 93 

In contrast with the earlier methods, Chen et al. [7] detect doors by using a deep learning 94 

algorithm based on a convolutional neural network trained with a large number of examples. 95 

The problem with the false positives in approaches [4], [5] and [6] is solved here, but a large 96 

number of undetected doors (false negatives) appear. The performance of their method is 97 

shown only with closed doors, and no results are shown for open or half-open doors. With a 98 

somewhat reversed strategy to that of Yang et al. [4], Kim et al. [8] propose an approach that 99 

first detects door handles, and then uses them to claim the existence of doors in the scene. The 100 

method detects individual vertical lines and, assuming a specific height for the door handle, 101 
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obtains a RoI and determines the handle type. The authors prevent their approach from being 102 

usable to detect open doors.  103 

Finally, Sekkal et al. [9] first generate a rough 3D model of the scene from the detection of 104 

vanishing lines in single colour images. This enables them to infer the location of wall planes 105 

within which they detect doors by looking for two consecutive vertical lines spaced by a 106 

predefined distance. This makes the method simpler but inefficient for the sizes of other doors. 107 

While the authors present some results that show that their ad-hoc method is able to detect 108 

both open and closed doors (without distinguishing them), it is certainly restricted to a small 109 

number of scenarios in which the images acquired actually contain the necessary vanishing 110 

lines (i.e. intersections of the walls with the floors and ceiling). This suggests that the method 111 

is not easily usable outside the context of corridor environments imaged with a front-facing 112 

camera. 113 

The 2D image-based methods reviewed above are prone to produce large numbers of false 114 

positives owing to their typical lack of consideration for the structure of the scene (i.e. where 115 

walls are) and the presence of many objects that are rectangular like doors (e.g. windows, 116 

paintings, radiators, or furniture). 117 

2.2 3D imaging-based methods. 118 

In order to achieve higher precision and reliability, researchers are increasingly considering 119 

3D reality capture sensors, sometimes together with 2D colour images [1,2,10–16,21]. This 120 

strategy is motivated by the value of 3D data in the understanding of the structure of the 121 

(indoor) environment, but also by the rapidly decreasing price of these sensors. 122 

Goron et al. [10] obtain point clouds from a 2D Laser Range Finder (LRF) on a tilting 123 

platform and extract the planes corresponding to closed doors by applying RANSAC 124 

(Random Sample Consensus). The main limitation of this technique is that it is based on the 125 

strong assumption that door panels do not lie exactly on the wall planes, which is often not 126 

true. Using a 2D range camera, Meyer zu Borgsen et al. [11] segment the 3D point cloud of 127 

the scene into planar patches using a region-growing algorithm based on point normal vectors. 128 

A door is detected if and only if the dimensions of the detected plane match pre-defined 129 

‘standard’ dimensions, and the door plane contains a handle. This approach is optimized to 130 

detect single-leaf closed doors and also assumes that door panels do not lie exactly on the wall 131 

planes. 132 

Using only a depth sensor (i.e. no colour information), Derry and Argall [14] and Dai et al. 133 

[1] detect walls as vertical planes in the acquired point clouds and subsequently detect doors 134 

as gaps in the point clouds of wall planes. Xu et al. [18] and Budroni et al. [19] use the same 135 

principle referred above and detect open doors. Yuan et al. [13] extend this approach to the 136 

detection of open or half-open doors. Wall planes are extracted from the point clouds acquired 137 

by a depth camera and the door’s opening angle is calculated by analysing the shape of the 138 

gap inside the door. Although interesting, this approach requires that the sensor be placed 139 

exactly in front of the door.  140 

In the following paragraphs, we provide a more in-depth discussion regarding four of the 141 

methods most closely related to ours. In all of them, as in ours, the authors use colour and 3D 142 

geometry to detect doors in robotic environments. We have selected those of Varadarajan et 143 

al. [12], Kakillioglu et al [20], Adiwahono et al. [2], Díaz-Vilariño et al. [15] and Banerjee et 144 

al. [16]. 145 
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Varadarajan et al. [12] propose an approach focused on the 3D room modelling that detects 146 

open doors in 3D point clouds obtained with a stereo camera rig. Colour information is used 147 

to identify wall-like surfaces, being the vertical planes calculated by means of iteratively 148 

reweighted least squares robust linear regression. Doors are searched for as gaps in the point 149 

clouds of wall planes (i.e. regions on the wall without sensed data). 150 

Kakillioglu et al. [20] also use 3D data and colour information in their approach. First, the 151 

planes corresponding to the walls are segmented by means of the RANSAC algorithm and the 152 

regions that contain gaps are then identified. Since the gaps may come from windows, mirrors 153 

or shiny surfaces, a verification stage is applied on a colour image which covers the gap's 154 

surrounding. In order to identify specifically gaps inside doors, they use a learning technique 155 

called Aggregate Channel Features (ACF). The method only detects open doors and does not 156 

provide the doorframe's 3D coordinates. 157 

Adiwahono et al. [2] use a horizontal line scanner and, similarly to Goron et al. [10], 158 

assume that the door is not entirely flush with the wall. The door candidate is detected as a 159 

cluster of points forming a relatively straight line of a specified length. The robot then 160 

approaches each candidate door and scans it with a range camera. The handle is detected by 161 

matching the mesh model of the handle with the data. This method does not delimitate the 162 

boundary of the door and only works for closed doors. 163 

Díaz-Vilariño et al. [15] carry out the detection of closed doors by applying the Generalized 164 

Hough Transform on RGB orthoimages of the wall extracted from coloured point clouds 165 

acquired with a laser scanning system. This method focuses on the detection of rectangles in 166 

the colour data, and is thus only able to detect closed doors. The approach is limited to cases 167 

in which the wall and door are different colours.  168 

In the framework of the Darpa Robotic Challenge, Banerjee et al. [16] develop an approach 169 

that enables an Atlas robot to detect closed doors. Doors are detected by finding consecutive 170 

pairs of vertical lines at a specific distance from one another in a 2D colour image of the scene. 171 

The lines are then recalculated in a 3D space with the help of the RANSAC algorithm. If there 172 

is a flat surface between each pair of lines, it is recognised as a closed door. Handle detection 173 

is subsequently carried out by means of colour segmentation, on the assumption that the 174 

handle is a different colour from that of the door. This approach makes several important 175 

assumptions. Among others, the authors impose a specific size on the door and handle, 176 

demand different colours for the wall and door and require the door to be in front of the 3D 177 

sensor. 178 

Table 2 shows other essential aspects that differentiate our approach from the works 179 

referenced above. The respective columns refer to the following aspects. (1) Wall detection in 180 

the door detection process; (2) Extraction of the door contour: some approaches only recognise 181 

the door handle ([2]) or the door opening ([12]) but do not delimitate the door’s boundaries, 182 

(3) Door type (C=closed, O=open, S=semi-open), (4) Integration of several views of the door, 183 

(5) Multiple door detection on the wall; (6) Door’s opening angle, (7) Dealing with varying 184 

light conditions (specular highlight) and colour variation; (8) Dealing with occlusion (9) 185 

Restrictions regarding the wall vs. door colours, (10) Door size restrictions. 186 

 187 

 188 

 189 
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Table 2. Comparison with the most related 3D imaging-based methods      190 

Method 

(1) 

Wall 
detection 

(2) 

Door’s 
contour 

(3) 

Types 

(4) 

Views 
integration 

(5) 

Multiple 
doors 

(6) 

Op. 
angle  

(7) 

Dealing 

with 
colour 

variation 

(8) 

Occlusion 
(9) 

Restriction: 

Wall/Door 

colours 

(10) 

Restriction: 
Door’s size 

[12]  X - O - X - X - - X 

[20] X - O - X - - - - X 

[2]   - - C - - - - - - X 

[15]  X X C X X - - - X X 

[16] - X C - - - - - X X 

Ours X X C/O/S X X X X X - X 

 191 

This paper is an extended and improved version of an earlier publication [22], which was 192 

an initial and incomplete solution that was developed under some restrictions that no longer 193 

exist in the improved system reported here. The essential differences between the initial and 194 

current versions are as follows: 195 

1. Our initial pipeline only worked under non-specular conditions. However, in order to 196 

reduce the impact of varying light conditions, our system makes use of a camera flash 197 

that has the side-effect of potentially generating large specular highlights that may have 198 

an impact on colour-based data processing strategies. The system reported here 199 

addresses this issue with an additional pre-processing stage, implementing a new 200 

specular highlight detector and corrector. 201 

2. In the earlier work, colour and depth images from several views of the scene were 202 

manually integrated. In the new system, an automatic view merging solution is 203 

proposed that optimally integrates several views into a unique 4D RGB-D orthoimage 204 

for each wall, taking into account specular highlights and the value of each scanning 205 

location to define the colour of each part of the wall. 206 

3. In this new work, we deal with doors in any state (open, semi-open and closed) and in 207 

fact present an integrated approach that provides the opening angle of the door. 208 

4. More extended experiments are reported in this paper that are conducted using a new 209 

dataset that is larger in size (number of test cases), variety and complexity. 210 

Additionally, this new dataset, which includes detailed ground truth information, is 211 

made publically available [23]. 212 

3 OVERALL DATA ORGANISATION 213 

The work presented here focuses on door detection, that is performed once the scanning 214 

of a room has been completed. The output of the room scanning is composed of (1) a dense 215 

3D coloured point cloud; (2) a labelled voxel model with associated 3D points from the point 216 

cloud; and (3) a 3D boundary model of the room composed of planar rectangular patches 217 

(and their associated voxels) representing the walls, ceilings and floors. Figure 1 illustrates 218 

the room scanning process and the generation of the labelled voxel model. We have carried 219 

out experiments to discover that a 20cm/side voxel dimension provides a suitable trade-off 220 

between data size (and therefore processing time) and performance. For more detailed 221 

information on our system, and particularly the creation of the voxel model and voxel 222 

labelling, we direct the reader to our prior publication [24]. 223 
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Since doors are located in walls, we shall from here on focus on these SEs. As shown 224 

in Figure 2, wall elements have associated voxels that can be labelled as either: 225 

- Occupied: The voxel contains at least one scanned point. 226 

- Occluded: The voxel does not contain any point and was not visible from any of 227 

the scanning locations used to scan the room. 228 

- Opening: The voxel does not contain any point, despite being visible from at least 229 

one scanning location. 230 

Our door detection process considers the labelling and coloured 3D points associated 231 

with the voxels of each wall rectangular segment. 232 

 233 

 
Figure 1. Illustration of the process used to construct the 3D voxel space and labels. Occupied voxels that are 234 

not associated with SEs are labelled as Clutter. Voxels belonging to the ceiling have been omitted for a better 235 

visualisation. 236 

 237 

 
Figure 2. Front view of the labelled voxels of walls. Wall voxels can be labelled as Occupied, Occluded or 238 

Opening.  239 

4 WALL DATA PREPARATION – VIEW MERGING  240 

The proposed algorithm for door detection uses as input a 4D orthoimage JCD of the wall in 241 

which each pixel has colour (RGB or HSV) and depth (i.e. orthonormal distance of the 3D 242 

points to the wall plane). The resolution of the 4D RGB-D orthoimage is set much higher 243 

than that of the voxel space, with a pixel size of 5mm × 5mm. 244 
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The coloured 3D point clouds associated with each of the walls extracted are acquired from 245 

various scanning locations. Integrating this information into a single reliable 4D orthoimage 246 

requires a robust view merging approach that considers both geometric merging and colour 247 

merging.  248 

The proposed view merging approach consists of creating, for each wall plane, a 4D 249 

orthoimage 𝐽𝐶𝐷
𝑘  for each of the k scanning locations that contribute data (i.e. coloured 3D 250 

points) to that wall, and then merging those multiple 4D orthoimages into a unified 251 

orthoimage 𝐽𝐶𝐷. Each 4D orthoimage 𝐽𝐶𝐷
𝑘  has the same size as 𝐽𝐶𝐷. 252 

Owing to the discretization effect, several coloured 3D points could be contained in the same 253 

pixel of 𝐽𝐶𝐷
𝑘  . For each orthoimage 𝐽𝐶𝐷

𝑘 , multiple colours and depths may, therefore, be 254 

associated with any given pixel, which requires a first level of geometric and colour merging. 255 

For colour merging, we set the colour of the pixel to the mean of the colours of the 3D points 256 

associated with it. For the geometric merging, we set the depth of the pixel to the maximum 257 

of the depths of the 3D points, i.e. the depth of the point that is the furthest from the wall 258 

plane inside the room. 259 

The merging of the set of orthoimages {𝐽𝐶𝐷
𝑘 } into the unified 𝐽𝐶𝐷 orthoimage is then carried 260 

out for the geometric information independently from the colour information. For the 261 

geometric merging, we similarly set the pixel depth to the maximum of the depths of the 262 

same pixel in all orthoimages in {𝐽𝐶𝐷
𝑘 }. For the colour merging, we propose an original 263 

approach, described in more detail in the following sections, that takes into account the 264 

presence of specular highlights and the ‘scanning value’ of each scanning location to define 265 

the colour of each part of the wall. 266 

Section 4.1 first presents our proposed approach for specular highlight detection. Section 4.2 267 

then presents the proposed colour merging approach that considers the value of each scanning 268 

position in terms of both colour sensing and the specular highlights detected. 269 

4.1 Detection of specular highlight regions  270 

Since we deal with indoor environments with variable illumination conditions (due to 271 

natural light coming from windows and uncontrolled artificial lighting), the photos from the 272 

scanner’s camera must be taken with flash. This provides a better, generally more consistent 273 

illumination of the scene; but at the same time this may result in specular highlights of various 274 

magnitude. To ensure that reliable colour information is provided for subsequent data 275 

processing stages (e.g. door detection), these specular highlights must be robustly detected 276 

and corrected. For specular highlight detection, the following four-step algorithm is proposed 277 

that is applied to each 4D orthoimage 𝐽𝐶𝐷
𝑘  (see also illustration in Figure 3): 278 

1. Specular Highlight Region of Interest (RoI) (Figure 3 (a)). Since the geometric data 279 

associated to walls is mainly planar, we make the simple assumption that specular 280 

highlights should mainly occur in regions surrounding the orthonormal projection of the 281 

camera centre on the wall surface. However, we do not assume that their extent is 282 

isotropic (i.e. they have a circular shape). Instead, we consider that their extent may be 283 

affected by the surface material and local surface geometry.  284 

2. Specular Highlight Region Candidates (Figure 3 (b)). Candidate regions are detected in 285 

the wall’s quantized intensity image with 11 grey levels. This quantized grey-scale image 286 
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is segmented and each segment analysed. If a segment is entirely surrounded by other 287 

lower-level segments and it does not contain any other segment, then we consider that it 288 

is a specular region candidate.  289 

3. Specular Highlight Region Detection (Figure 3 (c)). For each candidate region, four 290 

intensity profiles along the North/South (N/S), East/West (E/W), NE/SW and NW/SE 291 

axes and passing through the region’s centroid are analysed. If any of them fits a 2D 292 

Gaussian function, the entire region is recognized as a specular highlight region. 293 

4. Extent of Detected Specular Region (Figure 3 (d)). The extent of each detected specular 294 

region is defined by eight points coming from the above profiles, each profile of the 295 

specular region providing two end-points. The end-points are found either where the 296 

slope of the profile from the maximum point reaches zero, or where the profile presents 297 

a strong discontinuity. Finally, the specular highlight region is delimited by the spline 298 

that takes the eight end-points as control points.  299 

 300 

  

(a) 

  

(b) 

 

(c) 
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(d) 

Figure 3. Detection of specular highlight regions in the wall. (a) Specular highlight Region of Interest (RoI). 301 

The RoI is marked in black in the figure on the right. (b) Specular Highlight Region Candidates are regions 302 

located within the RoI with peaks in the intensity image. (c) Specular region recognition by matching four 303 

intensity profiles to a Gaussian function (here the N/S profile fits a Gaussian function). (d) The extent of the 304 

specular region is defined by a spline whose control points are the eight end-points found in the intensity 305 

profiles where the slope reaches zero or the profile shows a significant discontinuity. 306 

4.2 Colour merging 307 

It is very frequent in our context for wall surfaces to be scanned from different viewpoints. 308 

But, the change in viewpoint leads to colour acquisitions with slightly different light 309 

conditions and responses, which can ultimately result in colour artefacts when naively 310 

merging the colour data. Specular highlights also negatively impact colouring during view 311 

merging. In order to provide a more realistic and homogeneous colouring to the wall, a 312 

weighted mean colour merging is proposed that considers the expected value (i.e. 313 

quality/reliability) of the colour data from each scanning location and the presence of 314 

specular highlights. 315 

The first step of this process consists in correcting the specular highlights detected in each 316 

4D orthoimage 𝐽𝐶𝐷
𝑘  with the process described in Section 4.1. For this, we discard all colour 317 

information of the pixels contained in the highlight region and refill the region using the 318 

inpainting technique of Roth et al. [25]. Figure 4 shows an example of inpainting result 319 

obtained for three highlights, including the exemplar highlight of Figure 3. 320 

 321 

 

Figure 4 Repairing specular regions using inpainting. Result obtained for the exemplar highlight region 322 

of Figure 3. 323 

Once specular highlight inpainting is complete, the colour information from the different 324 

views {𝐽𝐶𝐷
𝑘 }  is merged as follows. For each pixel P in the wall orthoimage, let  1 2

, , ...
k

c c c  325 

be the k different colours obtained from the different scanning locations Oi, and let 326 
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 1 2, ,..., k    be the corresponding set of incidence angles.  ,i in u  , where n  is the 327 

normal vector of the wall and
iu  is the unitary vector of iPO . The merged colour assigned to 328 

P, C(P), is formally calculated using the formula in Equation (1). 329 

 1
1 2

1

( )

( ) ,

( )

k

i i

i

k

i

i

c w

C P w w w

w









 



 (1) 

where the weight w is picked from one of the two Gaussian functions w1 or w2, depending on 330 

the location of P in the wall.  331 

w1 is a Gaussian with mean µ1=0 and standard deviation 1=/9, whereas w2 is a Gaussian 332 

with mean µ2=/9 and standard deviation 2=/6. Both are shown in Figure 5. If P does not 333 

lie in a specular region for the given position k, w1 is chosen. This signifies: the more frontal 334 

the view, the higher the weight. The low 1 value is for making this criterion more exclusive. 335 

On the contrary, if P lies in a specular region, w2 is used. This means that the colour of 336 

intermediate lateral views is considered more reliable than either frontal or very oblique ones. 337 

Note that, although the specular regions have been repaired, this merging strategy takes into 338 

account the still likely possibility of having a non-perfect filling result. A smoothing mean 339 

filter is finally applied over the contour of the highlights regions. Figure 6 shows the results 340 

obtained after merging three views of a wall. 341 

The merging process leads to the creation of an orthoimage JCD (with colour and depth 342 

information) of the wall where each pixel has the RGB components and the orthogonal 343 

distance to the wall plane.  344 

 345 

 
Figure 5. ω1 and ω2 gaussians.  346 

 347 
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(a) 

   

(b) 

 (c) 

 

(d) 

Figure 6. Illustration of the colour merging process. (a) Three different positions of the scanner capture data 348 

for one wall. (b)  Set of wall orthoimages {𝐽𝐶𝐷
𝑘 } generated from each of the three views. (c) Result of the 349 

colour merging on the highlight region (left) and border smoothing (right). (d) Result of the colour merging. 350 

Orthoimage JDC. 351 

5 DETECTION OF DOOR OPENINGS IN WALLS 352 

Our algorithm for recognising doors is defined under the following assumptions, which 353 

are true in the vast majority of cases:  354 
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 The walls are planar surfaces (this assumption is actually made at the SE 355 

recognition and modelling stage); 356 

 Each wall has a fairly homogeneous colour but some variations may still exist, even 357 

after following the colour merging stage described above; 358 

 Doors are rectangular with vertical and horizontal sides. 359 

Door recognition is carried out in two stages, using a wall’s labelled voxels and its 360 

orthoimage JCD. The system first looks for door openings (i.e. openings that correspond to 361 

open or semi-open doors) as rectangular regions that contain opening voxels. This information 362 

is then used by the door recognition algorithm (see Section 6). This section explains how door 363 

openings are detected. 364 

Opening voxels help to roughly localise various openings through the wall, that correspond 365 

to windows and doors (open or semi-open). In order to detect these, and particularly door 366 

openings, we employ the following five-step approach (see also illustration in Figure 7): 367 

1. Creation of trinary orthoimage I (Figure 7 (b)). The trinary orthoimage I is generated. 368 

This has the same size as 𝐽𝐶𝐷 and its pixels are labelled data if the pixel is contained in 369 

an Occupied voxel, centroid if the pixel is contained in an Opening voxel and contains 370 

the centre of that voxel, and no-data otherwise (i.e. it is contained in an Opening or 371 

Occluded voxel). 372 

2. Extraction of a set of candidate rectangles in I (Figure 7 (c)). Horizontal and vertical 373 

lines are found in I by using a lateral histogram algorithm [26]. All possible candidate 374 

rectangles defined by the intersections between pairs of vertical and horizontal lines 375 

are then computed.  376 

3. Centroid clustering (Figure 7 (d)). The centroids in I are initially a set of dispersed 377 

pixels. Since these pixels represent opening regions, we employ a region growing 378 

algorithm to cluster these centroids. 379 

4. Best candidate rectangles (Figure 7 (e)). For each cluster of centroids, the best 380 

candidate rectangle is selected as the rectangle with the smallest area that contains the 381 

largest number of centroids. We look for rectangles that contain centroids because the 382 

opening could be occluded, as in the example shown in Figure 7. 383 

5. Detection of door openings (Figure 7 (e)). The rectangles with their lower side at the 384 

level of the floor are recognised as door openings (of open or semi-open doors). 385 

 386 

 

(a) 
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(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 7. Detection of openings inside doors. (a) An example of wall with occluded openings. (b) The trinary 387 

image I composed of centroid (originating from the voxel space), data (3D point) and no-data (the lack of 388 

data). (c) Sets of horizontal (in blue) and vertical (in red) lines found in image I. (d) Groups of centroids after 389 

applying the region growing algorithm. (e) Three openings are detected with one, in red, detected as 390 

corresponding to a door (the other two would normally be detected as corresponding to windows). 391 

6 DETECTION OF DOORS 392 

The door detection algorithm detects and delimits the boundaries of the door for any state 393 

of the door (i.e. open, semi-open and closed). The output of the previous section yields 394 

essential information with which to classify the door. If the door contains an opening, the 395 

door is open or semi-open (depending on the opening angle), otherwise the door is closed. 396 

The opening angle is calculated using the set of points next to the door, as is explained in 397 

sub-section 6.3. We typically classify a rotating door leaf as an open door if its opening angle 398 

is equal to or greater than 90º; if the angle is below 90º, we classify the doors as semi-open. 399 

Closed doors do not contain openings and are typically co-planar with the wall plane. The 400 

method can also handle other kinds of doors, such as sliding doors, for which the opening 401 
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angle is 0º. In this case, the state of the door (open or semi-open) is inferred after comparing 402 

the opening size with the standard size of the sliding doors of the building. 403 

To recognise doors, we have developed a 4D (colour + depth) approach that is able to deal 404 

with cases in which either the wall or the door do not have entirely uniform colours. Note 405 

that, although the proposed colour merging approach (Section 4) improves the uniformity of 406 

the colour information associated with the overall wall data, slight variations in colour may 407 

remain. As a result of this, the initial tests used to detect wall and door areas with simple 408 

colour thresholding algorithms yielded poor results, hence the proposed approach.  409 

The algorithm for detecting doors is divided into two steps, wall area detection and door 410 

detection, described in the corresponding two sub-sections below. 411 

6.1 Wall Area Detection 412 

Taking JCD as input, the segmentation of the visible parts of the wall is achieved as follows 413 

(with illustration in Figure 8, in which Figure 8 (a) shows the JCD image).  414 

1. Finding coherent colour seeds (Figure 8 (b)): First, small square patches (5×5 pixels), 415 

that we call ‘seeds’, are sampled regularly in JCD. For each patch m, the distribution 416 

of the RGB-D pixel values {v} is analysed, and the patches for which the standard 417 

deviation σ in any of the four components is higher than a threshold (we use σmax =0.2) 418 

are discarded. The process ensures that only patches that are coherent as regards both 419 

the colour domain and the depth (e.g. the patch is not located on the edge of frame) 420 

are retained. 421 

2. Clustering of coherent colour seeds (Figure 8 (c) and Figure 8 (d)): Each coherent 422 

square patch m is then represented by the mean value of the RGB-D values of its 25 423 

pixels 
mv .An adaptive k-means algorithm is then employed to group the sample 424 

patches mv into k clusters, where k is calculated by the algorithm itself Figure 8 (c)). 425 

The consistency within each cluster is then enhanced by removing any sample patch 426 

that has a silhouette value δ higher than a reasonable threshold (|δ|>0.7) (Figure 8 (d)). 427 

The silhouette value for a member of a cluster is a measure, with a value of between -428 

1 and 1, of how similar that member is to all the other members in the cluster, in 429 

comparison to members in the other. 430 

3. Wall area segmentation (Figure 8 (e)): Finally, we find the set of pixels of JCD 431 

associated with the the i-th cluster {𝜈𝑚}𝑖∈[1;𝑘] by means of an exclusive thresholding 432 

matching technique imposed on all the four RGB-D components, and the wall area is 433 

recognised as the cluster that contains the largest number of pixels located on the left, 434 

right and top borders of the image. 435 

 436 
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(a) 

   
(b) (c) (d) 

 
(e) 

Figure 8. Wall area detection. (a) JCD image with the colour component image JC in the left image and the depth 437 

colour component JD in the right image; (b) Detection of coherent ‘seed’ square patches; (c) Seed clusters. (d) 438 

Removal of inconsistent seeds from clusters. (e) The three clusters extracted in JCD with the recognised wall 439 

area marked in red. 440 

6.2 Door Detection  441 

To recognise doors, we present an approach based on discontinuities in the 4D RGB-D 442 

space and the knowledge of the wall area. We process the colour and depth components of 443 

JCD image separately, with JCD decomposed into JC (colour) and JD (depth), and the results 444 

are finally recombined (see Figure 9). For JC, a gradient operator is first applied to it that 445 

calculates the maximum change rate in the pixel colour (gradient) in the spectral dimensions 446 

[27]. This is followed by an image binarisation process, using Otsu’s global histogram 447 

threshold technique that selects the threshold to minimize the intra-class variance of the black 448 

and white pixels. The result of this process is a binary image J’C. For JD (depth), the Canny 449 

edge detector is applied, generating a second binary image J’D. J’C and J’D are finally 450 

combined using the OR operator to form a unified gradient image J’CD. 451 

White pixels in J’CD represent discontinuities in the colour-depth space, which enables the 452 

detection of door frames as discontinuities in the colour domain only, in the depth dimension 453 

only, or in both. Given our assumption of rectangular door frames, we detect straight lines in 454 

J’CD using the same approach as in Section 5 (Figure 10 (a)). These lines contain the colour-455 

depth discontinuities of the wall (if the door has a protruding doorframe, the discontinuity in 456 
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the D dimension should result in line detections; if the door has a colour different from that 457 

of the wall, the discontinuity in the colour dimensions should also result in line detections). 458 

The detected lines contain parts of the contours of hypothetical doors. The word ‘part’ is 459 

used here because occlusions may exist. 460 

Next, similarly to the detection of door openings, we calculate all possible rectangles 461 

defined by two pairs of horizontal and vertical lines. Since we are looking for rectangles that 462 

delimitate doors, we only retain rectangles whose size falls within the range of typical door 463 

sizes and whose lowest edge lies at the bottom in image. This yields a highly reduced set of 464 

rectangles {r} (Figure 10 (b)). Each rectangle r is then recognised as an actual door if it fulfils 465 

the following conditions: 466 

1. Colour and depth consistency: Using an adaptive k-means clustering process over the 467 

colour and depth data contained in rectangle r, the dominant colour and the dominant 468 

depth must both cover a certain percentage α1 of the door area. We use α1=50%.  469 

2. Door frame occlusion: Each side of r must be supported by discontinuity information, 470 

i.e. white pixels in J’CD, over at least the α2 percentage of its length. We use α2=60%, 471 

which means that 40% of occlusion of each side of the doorframe is permitted. 472 

3. Location consistency: Not more than α3=3% of the area enclosed by r intersects the wall 473 

area identified in the process described in Section 6.1. 474 

4. Minimum size. r is not contained within any other rectangle that verifies conditions 1, 2 475 

and 3. Note that in case of door openings, the minimum rectangle r always contains the 476 

opening’s area. 477 

Parameters α1, α2 and α3 have been defined empirically. Section 8 is devoted to showing 478 

the influence of these parameters in the final result. Figure 10 (c) illustrates the final door 479 

recognition results. In this case, both doors are (correctly) recognized.  480 

 481 
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Figure 9. Generating the combined discontinuity image 482 

   
(a) (b) (c) 

Figure 10. Door detection example. In this case the algorithm recognizes two closed doors. (a) Horizontal and 483 

vertical lines are detected in the unified discontinuity image J’CD. (b) Set of candidate rectangles {r}. (c) 484 

Recognized closed doors, with one presenting a significant level of occlusion. 485 

 486 
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6.3 Door Opening Angle 487 

If the door contains an opening, the door’s opening angle is obtained by taking a horizontal 488 

half-height splice of the door data and finding the line that best fits the points of the door leaf 489 

using RANSAC. Note that the line that represents the plane of the door is calculated with the 490 

door coordinates obtained in the previous step. In the case of rotating leaf doors, the angles 491 

are usually in the range [0º, 110º], whereas in that of sliding doors, the angles are zero or near 492 

zero. 493 

Figure 11 illustrates an example of opening angles calculated for normal and sliding doors. 494 

 495 

 
Figure 11 Calculation of opening angles. On the left, the red and green lines represent the wall plane and the 496 

door leaf. Top) A rotating leaf door. (Bottom) A sliding door. The opening is painted in transparent green and 497 

the door leaf is in blue. 498 

7 EXPERIMENTAL VALIDATION 499 

7.1 Performance Assessment Metrics 500 

We evaluate the pose and size of the recognized doors by means of Precision, Recall and 501 

F-measure that are metrics frequently used in pattern recognition performance assessment. 502 

We compute these metrics based on the overlap between the areas of the ground truth (that 503 

is the correct door placed in the true position) and recognized doors. We evaluate the true-504 

positive, false-positive and false-negative cases as follows (see Figure 12). Let Q and G be 505 

the areas of a pair of query and ground-truth doors. We define as true positive (tp) the area of 506 

the detected door that is really a door, and false positive (fp) the area of the detected door that 507 

does not belong to the ground-truth door. Finally, the false-negative (fn) is defined as the area 508 

that belongs to a door but is not detected by our algorithm. Equations 2, 3 and 4 give the 509 

formal expression of tp, fp and fn. 510 
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pt Q G   (2) 

p pf Q t   (3) 

n pf G t   (4) 

 511 

Figure 12. Definition of parameters tp, fp and fn in openings. 512 

Precision is defined as the fraction of the detected door's surface that is really a door 513 

(Equation 5), and Recall is the fraction of the door that is correctly recognized (Equation 6). 514 

F-measure (Fβ) is a measure that combines Precision and Recall, using a kind of weighted 515 

average using a variable parameter β that defines whether more emphasis is put on Precision 516 

(i.e. the false detected door’s area) or Recall (i.e. the undetected door’s area) (Equation 7). 517 

Since, there is no clear argument in our context to prioritise precision over recall or vice 518 

versa, we report results for β=0.5, β=1.0 and β=2.0. 519 

In order to give a more complete assessment of the performance of our method, we further 520 

introduce two measures for evaluating the error of the door model: the absolute global error 521 

(eabs) and relative global error (erel) of a detected door (Equations 8 and 9). Note that these 522 

expressions, explained here for a single door, can be extended to all detected areas of the 523 

scene. 524 
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7.2 Experimental Dataset 526 

In this paper, we present a new experimental dataset for door detection and modelling. 527 

The dataset is composed of coloured point clouds acquired in simulated and real 528 

environments. 529 

7.2.1 Simulated Environment 530 

The simulated scenario, illustrated in Figure 13, is the scanning of a 27m × 21m synthetic 531 

scene composed of 5 non-rectangular inhabited rooms, with 66 wall faces containing 5 doors 532 

with different opening angles. The synthetic model has been created with the Blender  533 

software, whereas the simulated scans have been obtained by using its add-on, Blensor [28], 534 

and following the scanning next-best-view scanning procedure developed for our automatic 535 

robotic system [24]. Blensor allows the simulation of scanning with a 3D laser scanner 536 

similar to ours, the Riegl VZ-400. 537 

The simulation of real colour images is also possible with Blensor, signifying that the 538 

simulated data contains 3D coloured data, and can thus be used to test our door detection 539 

approach in very good simulation conditions. The advantage of the simulated data, however, 540 

is that the location of each door (and any other object in the environment) is known exactly. 541 

In other words, the ground truth data can be generated perfectly and automatically. 542 

 543 

  
a) b) 

Figure 13. a) 3D synthetic model in which the method has been tested. b) Details of doors with different 544 

opening angles. 545 

7.2.2 Real Environments 546 

Real data has been acquired with our robotic platform in real environments. The 547 

experimental robotic platform, called MoPAD (Mobile Platform for Autonomous 548 

Digitization), is composed of a Riegl VZ-400 3D laser scanner and a Nikon D90 camera on 549 

board a mobile robot (Robotnik Guardian). The robot is further equipped with two Hokuyo 550 

URG-04LX-UG01 sensors for autonomous navigation in buildings. The data contained in 551 

our shared dataset has been acquired in three different buildings of Castilla La Mancha 552 

University. Figure 14 shows some photos of the interiors tested. 553 

In order to acquire the data, the mobile robot was manually moved to each room and the 554 

doors were then closed. Afterwards, our scan planning algorithm with an NBS strategy was 555 

executed. Data were also acquired for a few partially-closed doors to test the performance of 556 
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our approach in such cases. When the scanning process was complete, the accumulated point 557 

cloud was processed and the SEs (floor, ceiling and walls) extracted as described in Section 558 

3. Finally, the 4D orthoimages were generated for each wall as described in Section 4. 559 

Ground truth models were built by manually selecting the vertices of the rectangles 560 

delimiting the doors in the 4D orthoimages. 561 

 562 

              

Figure 14. Views of the interiors of the three buildings considered to generate the real datasets. 563 

The dataset is composed of coloured point clouds from 27 walls containing 35 doors. 564 

Figure 16 to Figure 20 illustrate several of the walls, showing various types of doors. Some 565 

of the walls also have windows and the majority contain other kinds of objects, either hung 566 

on the walls (e.g. papers, extinguishers, sockets, signs) or that partially occlude doors (e.g. 567 

curtains, posters). Different combinations of wall and door colours can be found, including 568 

very complex cases with doors co-planar to the wall and with a very similar colour to it, or 569 

walls that contain tiles with slightly different colours from the colour of the wall itself. 570 

Variations in the colour of the wall area were detected in the majority of cases. The range is 571 

between RGB variations of 5.49% (R), 5.49% (G) and 4.7% (B) in Figure 15 b), and 572 

variations of 27.84% (R), 29.41% (G), 27.84% (B) in Figure 20. Furthermore, the minimum 573 

RGB variation detected between the wall area and the door is 5.09% (R), 1.96% (G), 1.18% 574 

(B) in Figure 20. 575 

The dataset has been generated under conditions of non-controlled illumination, except 576 

for the use of an automatic electronic camera flash, as explained earlier.  577 

The wall scenes of which the shared dataset is composed can be classified into five 578 

categories: 579 

1) Simple scenes. These are wall scenes (10 instances in the database) with no occlusion 580 

that contain one single or double door. Examples of such scenes are shown in Figure 581 

16. 582 

2) Scenes with occlusions. These are wall scenes (7 instances) that contain either of the 583 

two kinds of occlusions that can impact on the performance of our algorithm at two 584 

different stages: door panel occlusion and door frame occlusion. Examples of such 585 

scenes are shown in Figure 17. 586 

3) Scenes with severe specular highlights. Examples of such scenes are shown in Figure 587 

18 (4 instances). 588 

4) Scenes with semi-open doors. These are wall scenes (5 instances) in which one of the 589 

doors is neither fully closed nor fully open, but is partially open/closed to various levels. 590 

The shared dataset currently contains 3 doors with closing percentages from 1% to 591 

70%. Examples of such scenes are shown in Figure 19. 592 
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5) Very complex scenes. These are wall scenes (9 instances) in which doors are co-planar 593 

to the wall or have a very similar colour to it. Examples of such scenes are shown in 594 

Figure 20, Figure 21 and Figure 23. 595 

7.3 Door Detection in a Simulated Environment 596 

 597 

Figure 15 shows the doors recognised in the simulated data (in red) superimposed onto the 598 

ground truth (in blue). The algorithm correctly detects all doors and there is only one false 599 

positive. In the case of the majority of the doors, a slight difference between the detected and 600 

ground truth rectangles is visible. This difference is evaluated using the statistics presented 601 

in Section 7.1,and all the results are summarised in Table 3. It can be seen that, in general, 602 

very high precision and recall values are achieved in the majority of cases (>0.95). The 603 

overall average values are 0.986 (Precision) and 0.983 (Recall). Furthermore, the average 604 

values of eabs and erel are 0.077m2 and 0.030 m2 respectively. The latter signifies that, on 605 

average, the overlap error between the ground truth and detected door rectangles is only 8.1% 606 

of the surface of the doorframe rectangle. The F-measure values were F0.5=0.9931, 607 

F1.0=0.9905 and F2.0=0.9880, which is a very good result (values above 0.85 are normally 608 

considered positive) and leads us to suggest that our approach could be used in cases in which 609 

either or both high recall and high precision are priorities. On the whole, these results suggest 610 

a good performance of our approach that achieves decent accuracy in the detection and 611 

localisation of doors. 612 

 613 

 

 

a) b) 

 614 

Figure 15. a) Door detection results. Rectangles of the ground truth are in blue and calculated rectangles are in 615 

red. b) Details of the doors detected. 616 

  617 
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 618 

Table 3. Evaluation of the results in the doors detection test. 619 

Door Op. angle Precision Recall eabs (m2) erel 

#1 34,96°  0,993     0,989     0,035     0,017    

#2 2,25°  0,990     0,991     0,065     0,018    

#3 52,72°  0,953     0,953     0,239     0,092    

#4 0°  0,987     0,983     0,058     0,028    

#5 3,54°  0,995     0,986     0,045     0,017    

#6 0°  0,987     0,987     0,066     0,025    

#7 55,64°  0,990     0,982     0,069     0,026 

#8 0°  0,987     0,986     0,067     0,026    

#9 0,35°  0,994     0,986     0,049     0,018   

Mean value - 0,986 0,983 0,077 0,030 

 620 

7.4 Door Detection in Real Environments 621 

This section presents the results yielded by the algorithm in the case of closed doors and 622 

partially-closed doors, which are really the most interesting cases as regards accomplishing 623 

further robot interaction tasks, such as handle grasping and door opening. 624 

The door detection algorithm successfully detects 34 of the 35 doors (97% detection rate) 625 

contained in the dataset acquired from real environments and yields two false positives in the 626 

case of complex walls (see Figure 20 and Figure 23). Figure 16 to Figure 20 present the 627 

results for a set of representative walls of the five wall classification categories: 628 

1) Simple scenes (Figure 16). The method worked in all cases. 629 

2) Scenes with occlusions (Figure 17). The results show that our method worked with door 630 

panel occlusion of up to 40%, and doorframe occlusion of up to 50%, which are 631 

unfortunately the highest occlusion levels in the current database. 632 

3) Scenes with severe specular highlights (Figure 18). 56% of the walls led to significant 633 

specular highlights during scanning, owing to the smoothness of the surfaces involved. 634 

The algorithm correctly detected all those specular highlights, with small regions of 635 

about 8 cm2, up to quite large regions of about 0.27 m2. 636 

4) Scenes with semi-open doors (Figure 19). The algorithm succeeded in all three cases. 637 

5) Very complex scenes (Figure 20). Owing to the robustness of the procedure employed 638 

for calculating the wall area (explained in Section 6), the doors were successfully found 639 

in all but one of these cases. Figure 21 shows the intermediary results of the complete 640 

process in the particular complex scene in which the wall and doors are of more or less 641 

the same colour. 642 

  643 
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 644 

 
 

a) 

 
 

b) 

 
 

c) 

  

d) 

Figure 16. Detection results for Simple Scenes. (Left) Original 4D orthoimages. (Right) Door detection. Each 645 

coloured rectangle represents a detected door. 646 
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d) 

Figure 17. Detection results for Scenes with occlusion. Left: Original 4D orthoimages. Centre: Door 649 

detection. Right: Door and doorframe occlusion percentages. 650 
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c) 

Figure 18. Detection results for scenes with severe specular highlights. Left: Original 4D orthoimages. Centre: 653 

Specular region detection and correction. Right: Corrected 4D orthoimages and door detection. 654 

 655 
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a) 

  

b) 

  

c) 

 
 

d) 

Figure 19. Detection results for Scenes with semi-open doors. Left: Original 4D orthoimages. Right: Door 658 

detection. Each coloured rectangle represents a detected door. 659 
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c) 
Figure 20. Detection results for Complex Scenes. Left: Original 4D orthoimages. Centre: Wall area detected 661 

in white. Right: Door detection. The last case shows a false positive. 662 

 663 

          
a) b) 

  
c) d) 

Figure 21. Intermediary results for a particularly complex case:  a wooden double-door with a similar colour 664 

to the wall that is itself made up of multiple wooden panels. (a) View of the wall. (b) Wall area recognition. 665 

(c) Candidate rectangles superimposed in different colours. (d) Rectangles that enclose the detected doors. 666 
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The door positioning results are summarised in Table 4 that reports the mean precision, 667 

recall, absolute error, relative error and Fβ calculated for ß =0.5, ß =1 and ß =2, for each of 668 

the five datasets sub-categories. Figure 22 additionally shows a precision-recall graph that 669 

includes all doors tested. In general, it can be stated that the method yields encouraging 670 

results. The average precision is above 98% in all cases, whereas recall values are in excess 671 

of 95%. For the error measures, the worst result is again for complex scenes with erel≈4,4 %, 672 

whereas erel≈4,1 % for all other scenes. Fβ is above 0.95 for all cases and any choice of 673 

between ß =0.5, ß =1 and ß =2 does not provide any meaningful difference in the respective 674 

harmonic means. In other words, the approach performs equivalently whether recall or 675 

precision (or neither) is considered a priority. These results are encouraging, demonstrating 676 

the accuracy in the estimations of the size and position of the detected doors. 677 

Table 4. Door positioning results. Mean values of Precision, Recall, Errors and F-measure for each of the five 678 

dataset sub-categories. 679 

Cases Instances Precision Recall  eabs(m2) erel 𝑭𝟎.𝟓 𝑭𝟏 𝑭𝟐 

Simple 10 0,995 0,993 0,032 0,012 0,997 0,992 0,988 

Occlusion  7 0,989 0,971 0,115 0,041 0,999 0,997 0,996 

Specular 

highlights  
4 0,998 0,995 0,086 0,007 0,994 0,996 0,999 

Semi-open 

doors  
5 0,997 0,964 0,139 0,039 0,998 0,997 0,997 

Complex 

walls  
8 0,993 0,964 0,138 0,044 0,991 0,977 0,964 

 680 

 
 

Figure 22. Precision vs. Recall graph  

We shall now discuss cases in which our approach fails. The method fails mainly when 681 

the wall area and the doors are coplanar and are of a very similar colour. This occurs with 682 

the wall in Figure 23, in which the door is located on the left of the wall. The wall area 683 

detected is wrong (Figure 23 (d)) because the algorithm is not able to calculate the appropriate 684 

colour clusters. Thus, after removing inconsistent seeds from the clusters, the cluster that 685 

would normally best correspond to the wall (in yellow) remains incomplete, lacking the 686 

whole variety of colours of the wall and not including the edges of the orthoimages. As a 687 

result, the detection of the wall area is erroneous, and the validation of the rectangles does 688 

not yield the correct detection (false negative). In addition, owing to the occlusion on the 689 

bottom-right-hand part of the wall, the algorithm falsely detects a door (false positive case). 690 
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While this case provides a good illustration of the failure of our approach, it must be 691 

highlighted that these are particularly hard cases, and other existing detection methods would 692 

probably also fail. 693 

 694 

      

(a) (b) (c) 

     

(d) (e) (f) 

Figure 23. Example of situation in which our approach fails: a complex case in which the wall has a similar 695 

colour to that of the door, there are windows within door panels, and there are occlusions. The algorithm 696 

yields one false positive and one false negative. (a) 4D Orthoimage JCD. (b) Set of initial square patches. (c) 697 

Seed clusters (rejected seeds in black). (d) Image of the detected wall area. (e) Set of candidate rectangles 698 

superimposed on the figure in various colours. (f) Final result. 699 

 700 

7.5 Impact of the specular highlighting detection 701 

Specular highlight detection is an important issue that increases the robustness of our 702 

proposal. Nevertheless, our approach could work with or without correction, depending on 703 

where specular highlighting takes place on the wall. In order to show the impact of specular 704 

highlights on the performance of our method, we have carried out an analysis of the method 705 

when this particular phase of the process is omitted. 706 

Table 5 shows the results obtained for four significant walls on which the specular region 707 

can easily be seen. In this case, if the specular highlight detection is not carried out, the 708 

method fails. And in general, it always yields worse results (in terms of precision and recall). 709 

Basically, when the highlight falls between door and wall, the wall area is badly detected (see 710 

Section 6.1) and the method fails. This occurs with the wall in Figure 24. In this case, a part 711 

of the door is labelled as wall and the algorithm is not able to recognise the door. The 712 

conclusion is that, if the specular highlighting detection is not carried out, the method 713 

sometimes fails and always yields worst results (in terms of precision and recall). 714 

 715 

 716 

 717 
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a) 

   

b) 
Figure 24 Results with (a) and without (b) specular highlight correction. From left to right: 4D orthoimage 718 

JCD, wall area detected, door detection. The door is not detected without highlight correction. 719 

Table 5 Results with and without specular highlight correction. (Walls: #1 (Figure 20 b)), #2 (Figure 18 b)), 720 

#3 (Figure 18 a)), #4 (Figure 18 c)) 721 

 Results with specular highlight correction 
Results without specular highlight 

correction 

Walls 
Doors 

detection 
Precision Recall 

Absolute 

Error 

Relative 

Error 

Doors 

detection 
Precision Recall 

Absolute 

Error 

Relative 

Error 

#1 Yes 1 0.928 0.390 0.071 Yes 1 0.918 0.443 0.081 

#2 Yes 1 0.992 0.028 0.007 Yes 1 0.989 0.038 0.010 

#3.1 Yes 1 0.991 0.019 0.008 Yes 0.9956 0.991 0.029 0.013 

#3.2 Yes 1 0.995 0.010 0.004 Yes 1 0.995 0.010 0.004 

#4 Yes 0.995 0.999 0.023 0.004 No - - - - 

 722 

8 PARAMETER SELECTION 723 

Our algorithm uses several parameters, which have been set by evaluating an independent 724 

subset of the data. We conducted a set of experiments with the aim of determining the effect 725 

of each parameter on the performance of the method. Table 6 shows the failure percentages 726 

and the minimum and mean precision and recall for each range of values tested. The main 727 

parameters are as follows. 728 

 δ (Section 6.1). The silhouette value δ is necessary to refine colour seeds in the 729 

respective clusters. Table 6 shows that values up to 0.6 entail failures. On the other 730 

hand, excessive values of δ (i.e. 0.9) maintain the initial clustering and the 731 

inconsistent samples are not removed from the associated cluster. The threshold was, 732 

therefore, eventually set at 0.7. 733 

 α1 (Section 6.2). Parameter α1 thresholds the dominant colour and depth of door 734 

candidates. Table 6 presents the performance of our method for a range of values of 735 

α1. The main comment is that in the case of values greater than 0.5, the failures rate 736 

grows from 8% to 33%. Very low values, meanwhile, increase the risk of accepting 737 

candidate rectangles that contain a part of the wall or other objects next to the door. 738 
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As a result, we fixed the parameter at 50%. Figure 25 b) illustrates the results obtained 739 

for an example. 740 

 α2 (Section 6.2). Another interesting parameter related to occlusion is that of the 741 

percentage of door frame occlusion α2. High values entail that the method will not 742 

admit a reasonable occlusion on the edges, as occurs for values greater than 0.7. On 743 

the contrary, in the case of low thresholds, many wrong candidate rectangles would 744 

be retained as candidates. According to the results obtained and reported for one 745 

example in Table 6, we have fixed this parameter at 60%. Figure 25 c) illustrates how 746 

the algorithm refuses best candidate rectangles with more occlusion for 0.7. 747 

 α3 (Section 6.2). In order to define the boundary of the door in a precise manner, 748 

parameter α3 imposes the location consistency threshold. Table 6 shows that the 749 

thresholds that yield the best precision and recall values are 0.03 or 0.04. In order not 750 

to run the risk of introducing bigger errors in the door size and make the method more 751 

sensitive to local noise and small imprecisions in the wall area detected, we set this 752 

parameter at 0.03 (see Figure 25 d)). 753 

 σ (Section 6.1). We use the standard deviation σ of the four components (RGB+depth) 754 

to find coherent colour seeds in the RGB image. In this case, 0.2 was found to be the 755 

most suitable value. 756 

 757 

Table 6 Results of the door detection method for different values of δ, α1, α2 and α3. 758 

 Value  0,1 * p 0,2 * p 0,3 * p 0,4 * p 0,5 * p 0,6 * p 0,7 * p 0,8 * p 0,9 * p 

δ  
(p=1) 

Failures 20% 20% 20% 20% 20% 20% 0% 0% 20% 

Min. P. 0,958 0,958 0,958 0,958 0,958 0,958 0,958 0,958 0,779 

Min. R. 0,981 0,981 0,981 0,981 0,981 0,981 0,981 0,981 0,988 

Mean P. 0,99 0,99 0,99 0,99 0,99 0,99 0,992 0,992 0,937 

Mean R. 0,988 0,988 0,988 0,988 0,988 0,988 0,992 0,992 0,994 

α1  
(p=1) 

Failures 0% 0% 0% 0% 0% 8% 17% 25% 33% 

Min. P. 0,924 0,924 0,924 0,924 0,924 0,924 0,869 0,959 0,959 

Min. R. 0,872 0,872 0,872 0,872 0,872 0,496 0,496 0,462 0,433 

Mean P. 0,985 0,985 0,985 0,985 0,985 0,985 0,978 0,996 0,996 

Mean R. 0,976 0,976 0,976 0,976 0,976 0,899 0,751 0,728 0,754 

α2  
(p=1) 

Failures 10% 0% 0% 0% 0% 0% 0% 10% 10% 

Min. P. 0,485 0,858 0,87 0,901 0,901 0,924 0,924 0,959 0,983 

Min. R. 0,619 0,978 0,978 0,978 0,978 0,978 0,894 0,889 0,462 

Mean P. 0,931 0,97 0,972 0,977 0,977 0,983 0,983 0,995 0,997 

Mean R. 0,961 0,992 0,992 0,992 0,992 0,991 0,975 0,976 0,866 

α3 
(p=0,1) 

Failures 17% 0% 0% 0% 0% 0% 0% 0% 17% 

Min. P. 0,959 0,959 0,959 0,959 0,933 0,933 0,933 0,933 0,779 

Min. R. 0,966 0,963 0,982 0,982 0,982 0,982 0,982 0,982 0,988 

Mean P. 0,99 0,99 0,99 0,99 0,968 0,968 0,968 0,968 0,935 

Mean R. 0,985 0,988 0,992 0,992 0,994 0,994 0,994 0,994 0,994 

 759 

 760 
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a) b) 

  
c) d) 

Figure 25  Examples of doors detected for different values of parameter a) δ, b) α1, c) α2 and d) α3. 761 
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9 CONCLUSIONS AND FUTURE WORK  762 

This paper presents an integrated approach for the detection, localisation and sizing of 763 

doors that are either closed or open. The detection is carried out in coloured 3D laser scanned 764 

point clouds. The detection of open doors is based on the detection of rectangular data holes 765 

in the wall planes, while the detection of closed doors is based on the detection of the actual 766 

wall area and the subsequent processing of the rectangular areas not corresponding to the 767 

wall. This unique approach can handle occlusion and uses both 3D geometry and colour for 768 

more robust detections and localisations. Its robustness and performance are validated 769 

experimentally using a dataset of simulated and real data (including ground-truth 770 

information) from wall scenes of various complexities. A dataset [23] composed of 19 771 

coloured point clouds corresponding to real walls that contain at least one door is made 772 

publically available to the research community. The experimental evaluation shows that the 773 

proposed approach works in very challenging cases in which doors are closed, are co-planar 774 

to the wall, or/and are of a very similar colour to it. 775 

Future work will focus on addressing more complex cases (some of which are contained 776 

in the shared datasets). We shall particularly focus on developing a more robust algorithm 777 

for the detection of wall areas that have significant colour variations and on approaches for 778 

non-rectangular doors. With regard to the first issue, we are working on the segmentation 779 

and integration of different colour-coherent parts of wall areas. With regard to the second 780 

subject, we assume that non-rectangular doors are essentially those with rounded archways. 781 

We hope that a matching technique may be employed to recognise different archways in the 782 

image J’CD. 783 
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