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Abstract

Construction quality and progress control are demanding, yet critical con-
struction activities. Building Information Models and as-built scanned data
can be used in Scan-vs-BIM processes to effectively and comprehensively sup-
port these activities. This however requires accurate registration of scanned
point clouds with 3D (BIM) models. Automating such registration remains
a challenge in the context of the built environment, because as-built can be
incomplete and/or contain data from non-model objects, and construction
buildings and other structures often present symmetries and self-similarities
that are very challenging to registration.

In this paper, we present a novel automatic coarse registration method
that is an adaptation of the ‘4 Points Congruent Set’ algorithm to the use
of planes; we call it the ‘4-Plane Congruent Set’ (4-PlCS) algorithm. The
approach is further integrated in a software system that delivers not one but
a ranked list of the most likely transformations, so to allow the user to quickly
select the correct transformation, if need be. Two variants of the method are
also considered, in particular one in the case when the vertical axis is known
a priori; we call that method the 4.5-PlCS method.

The proposed algorithm is tested using five different datasets, including
three simulated and two real-life ones. The results show the effectiveness of
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the proposed method, where the correct transformation always ranks very
high (in our experiments, first or second), and is extremely close to the
ground-truth transformation. Experimental comparison of the proposed ap-
proach with a standard, more intuitive approach based on finding 3-plane
congruent sets shows the discriminatory power of 4-plane bases over 3-plane
bases, albeit at no clear benefits in terms of computational time. The experi-
mental results for the 4.5-PlCS method show that it delivers a non-negligible
reduction in computational time (approx. 20%), but at no additional benefit
in terms of effectiveness in finding the correct transformation.

Keywords: BIM, LiDAR, Point Cloud, Laser Scan, As-Built, Model,
Coarse, Registration

1. Introduction1

Building Information Modeling (BIM) and 3D imaging technologies are2

seeing exponential use in the Architectural, Engineering and Construction3

(AEC) sector. Two key processes that integrate these two technologies can4

be referred to as ‘Scan-to-BIM’ [36, 50, 8, 53, 54, 28] and ‘Scan-vs-BIM’5

[52, 9, 26, 45].6

Scan-vs-BIM, the process of comparing an image or scan of the as-built7

(or as-is) environment against the 3D BIM model of that facility, has par-8

ticularly been shown to have great potential for supporting activities such9

as construction progress control [60, 25], quality control [10] and eventually10

life-cycle monitoring [39]. The effectiveness of that process, however, re-11

quires accurate 3D registration (i.e., alignment) of the scanned point cloud12

data with the 3D BIM model.13

3D registration is a long-established area of research. Fine registration14

now has well-established algorithms derived from the Iterative Closest Point15

(ICP) algorithm [4, 61, 13, 41]. Coarse registration, in contrast, remains16

a widely studied problem with most efforts focusing on the registration of17

two or more point clouds [18, 34, 43, 1], and fewer on the registration of18

point clouds with 3D mesh/BIM models [7, 45] (note that the latter can be19

transformed into the former type of problem by quantization of the mesh20

surface model). In the context of the built environment, 3D registration is21

made particularly challenging by the fact that built environment structures22

present significant levels of symmetry and self-similarity. Previous works23

in the area of registration of 3D Terrestrial Laser Scanning (TLS) point24
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clouds with 3D BIM/mesh models either considered only semi-automated25

approaches [7], or are not robust to high levels of symmetry, self-similarity26

[45], or have not considered that 3D scans could contain incomplete data, e.g.,27

with data from only a part of the facility or in the presence of clutter[45].28

In this paper, we propose a novel algorithm for the alignment of 3D point29

clouds with 3D BIM/mesh models that is inspired by the ‘4-points congruent30

sets’ approach of Aiger et al. [1] and two of its variants proposed by Theiler31

et al. [49, 48]. Observing that the built environment is typically composed of32

numerous planar surfaces (walls, columns, floors, ceilings, etc.), we extract33

planar patches from the input point cloud and 3D BIM/mesh model and34

develop a ‘4-plane congruent sets’ algorithm.35

The rest of the paper goes as follows. Section 2 reviews the state of the36

art in 3D coarse and global registration, with focus on the coarse registration37

techniques most relevant to the work presented here. The section concludes38

with a summary of our contribution. Section 3 describes the proposed ‘4-39

plane congruent sets’ approach, as well as two variants, including one for40

the special but common case when the vertical axis is known a priori in41

the cloud and model data. Section 4 presents the user interface that has42

been designed to enable the user to effectively select the correct registration43

from a ranked list of most likely transformations provided by the proposed44

algorithm. Although it will be shown that our algorithm performs very well45

(with the correct transformation ranked very high, and typically first), this46

user interface is useful to correct any eventual error. Section 5 presents and47

discusses all experiments conducted with both simulated and real-life data.48

Section 6 concludes this work and offers thoughts for future work.49

2. Related work50

3D rigid registration has received significant attention since the 1990’s and51

the growing availability of 3D imaging technologies. While fine registration is52

a problem for which robust techniques are well established, coarse registration53

remains the area of greater challenge. Coarse registration procedures try54

to be as automated (and effective) as possible, and may rely solely on the55

scene data (i.e., point clouds and/or 3D mesh model) or can make use of56

additional information such external sensory data (e.g., GPS, inclinometer)57

or artificial markers/targets [40, 2, 15, 33]. Because we propose a markerless58

rigid registration method, we focus the rest of this review on this type of59

techniques.60
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2.1. State of the art61

A first group of markerless coarse/global registration techniques aim to62

extend fine registration techniques with global search strategies. Yang et al.63

[58] introduced the Go-ICP algorithm that is a globally optimal version of the64

well-known ICP. The algorithm uses a Branch and Bound (BnB) approach to65

search efficiently through the solution space SE(3) of rigid transformations.66

They combine the local ICP with exploitation of special structure of the67

underlying geometry of SE(3), to encounter the upper and lower bounds to68

apply BnB and find the optimal solution. However it has a major drawback69

that is the size of the dataset it can effectively and efficiently handle. Another70

global solution is the Sparse ICP algorithm of Bouaziz et al. [11] that uses71

sparsity inducing norms and Alternating Direction Method of Multipliers72

(ADMM) for its global search. The Efficient Sparse ICP variant by Mavridis73

et al. [30] introduces Simulated Annealing in combination with an ADMM-74

optimiser to significantly improve the convergence rate and guarantee the75

convergence to the final optimal solution.76

The second group are coarse registration techniques that are based on the77

matching of salient geometric and/or visual features (i.e., natural targets) au-78

tomatically extracted in the model and target datasets [21, 42, 3, 44, 55, 47].79

Salient features have been sought in the 3D data field [59, 1], in the surface80

normal field [14, 48] (e.g., 3D Harris), in the colour field [51], in the laser81

return intensity field [49, 48, 56, 6] (e.g., 3D Difference of Gaussians or salient82

features using thresholding), or even after texturing the point clouds with ge-83

ometric descriptors [12] (e.g., 3D Difference of Gaussians). The approaches84

proposed in [14] and [49, 48] (both variants of [1]) are particularly relevant85

(albeit in different ways) to the approach we propose, and so are reviewed in86

more detail in the following.87

Of particular interest to the approach presented here are previous works88

that focused on planes and planar patches. The approach of Dold and Bren-89

ner [14] starts by extracting planar patches from the target and model data,90

and then searches for the transformation matrix by matching 3-plane bases91

(formed by three non-parallel patches) or 2-plane bases (formed by two non-92

parallel patches) and calibrated colour images. To resolve under-constrained93

cases where planar patches point in only two directions (which they argue94

is common in the case of streets), they use correlation of matching planar95

patches with colour information obtained from the calibrated digital camera96

to obtain the translation component of the transformation. Their approach97

is only demonstrated with a small number of planar patches (their analy-98
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sis considers up to 30 patches, while we typically experienced a few hun-99

dreds), so that it is unclear how well it would scale up. More importantly,100

their approach does not seem robust to (self-)occlusions, because their patch101

matching criteria are not robust to such occurrences (they actually do not re-102

port results in such contexts). Yet, (self-)occlusions are common in the built103

environment, both in indoors or outdoors contexts. He et al. [22] extract104

‘complete’ planar patches from range images to be co-registered, and patch105

descriptors, such as areas and normal vector direction. Registration is then106

achieved by building an interpretation tree that is pruned based on patch de-107

scriptor constraints, and ‘two-matched-patches’ geometry constraints. The108

main drawback of that approach is similar to that of [14] in that it works only109

with complete planar patches, i.e., it does not work with partially occluded110

patches, which is very common in our case. Pathak et al. [35] register consec-111

utive 3D scans from a moving robot platform by matching planar patches and112

proposing the Minimally Uncertain Maximal Consensus for finding the (opti-113

mal) transformation that maximises geometric consistency while minimising114

the uncertainty volume in configuration space. This approach is however115

designed for two scans that have equivalent and relatively small numbers of116

planes (<100). Kim et al. [27] perform point cloud registration by combin-117

ing the plane matching with matching of SURF keypoints from panorama118

colour images. They first extract the 2D SURF keypoints from the images,119

project the transformation matrix in the point cloud and perform the fine120

registration by using three non-parallel planar patches.121

Planes have also been combined with other features, like points and lines,122

to increase the chance of finding the right transformation, e.g., in case one123

of the types of features is not very present in the scene [27, 57, 38].124

Aiger et al. [1] propose the ‘4-point congruent sets’ (4-PCS) algorithm125

that uses ‘4 co-planar point bases’ as distinctive features to match model and126

target point clouds. These are selected randomly from the model point cloud127

data and 4-point congruent sets are then searched in the target data. Each128

match provides a transformation that is then tested for wider support from129

the rest of the two datasets. The variant algorithm ‘Super 4-PCS’ proposed130

in [31] reduces the computation time by using a 3D grid to organize the data131

and efficiently extract target congruent bases. Mohamad et al. [32] propose132

to relax the co-planarity constraint on the bases by “constructing the 4-point133

base from two pairs whose projections onto a common plane have a unique134

intersection point” (they refer to this as a ‘3D intersection’). The orthogonal135

distance between the two lines is then added to the ratios used to match136
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4-point bases, which efficiently reduces the number of incorrect bases being137

matched, and consequently the amount of unnecessary verifications being138

done in the further steps. Finally, Theiler et al. [49, 48] propose another139

variation of the original 4-PCS algorithm, by focusing attention on keypoints140

as opposed to any points in the datasets. They extract keypoints from the141

original data, by using 3D Difference of Gaussians over the return intensities142

of the LiDAR, and 4-point bases are constituted using only those keypoints,143

which reduces the number of candidate bases and therefore the complexity144

of the search.145

The 4-PCS method and its variants present significant advances to the146

coarse registration problem. However, while they aim to be as general as pos-147

sible (i.e., not be context specific), it must be noted that the Built Environ-148

ment presents peculiarities and challenges — (self-)similarities, symmetries149

and (self-)occlusions — which can challenge those methods and make them150

ineffective, as already suggested and illustrated by Dold and Brenner [14].151

In fact, none of the 4-PCS methods report results with datasets acquired in152

such contexts, presenting significant levels of (self-)similarities, symmetries,153

and (self-)occlusions.154

Finally, it is worth noting that similar approaches can be found in the155

object retrieval field, where it is usually done by matching signatures vectors,156

histograms of features, or spin images from precomputed databases against157

the ones extracted from the point cloud [5, 20, 29, 16, 17, 24]. The similar-158

ities of those works to registrations is based on the fact that these methods159

essentially try to find the transformation matrix that aligns the object of160

interest with the reference objects from the database.161

2.2. The case of cloud-mesh registration162

The 3D registration of point clouds to 3D surface models (e.g., meshes)163

can be conducted using the same techniques and constraints used in cloud-164

cloud registration, since the model can always be quantized into a point165

cloud. Tam et al. [46] provide a very good survey of the state of the art in166

generic cloud-model registration. Focusing more specifically on the alignment167

of the laser scanned point clouds with 3D models in the built environment,168

Kim et al. [26, 25] proposed a method that simply uses the principal com-169

ponent analysis (PCA) of each dataset and infer the transformation rotation170

by transforming the base made by the principal components of the target171

dataset to the base of the model dataset. Translation is computed as the172
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vector between the centres/centroids of the two datasets. This method ac-173

tually presents numerous limitations. First, it assumes that the principal174

components of both datasets correspond to the same global directions. To175

be true, this requires that the two datasets correspond to exactly the same176

objects/scenes, which means that this cannot be used to align a scan of a177

part of the facility to the entire model of the facility. Second, it makes the178

fairly strong assumption that there are no self-similarity or symmetry in the179

scene. Thus, that simple method is extremely limited for practical use.180

The symmetries, lack of completeness, occlusions, self-similarities encoun-181

tered in the built environment are significant challenges to achieve robust182

automatic registration. In contrast to the other works above, Bosché [9]183

acknowledges this and proposes a semi-automated plane-based registration184

method. While the user has to select three pairs of matching planes in185

the model and point cloud, the extraction and selection is made very simple186

with the development of an effective ‘one-click plane extraction and selection’187

method.188

2.3. Contribution189

In this manuscript, we propose an adaptation of the original work of Aiger190

et al. [1] that is inspired by two of its variants proposed by Theiler et al.191

[49, 48] and also the works in [9] and [14].192

We propose a ‘4-plane congruent sets’ method that uses planes as features,193

instead of keypoints used in [49, 48]. Using planes presents two main benefits:194

• The built environment is largely made up of planar surfaces (as ob-195

served in [9, 14]), and so it is very likely that most scenes will present196

numerous planar surfaces.197

• Planes are surfaces, which makes their visibility (i.e., retrievability)198

less sensitive to clutter and (self-)occlusions, that are commonly en-199

countered in the context of buildings and other facilities. In contrast,200

(key)points are more likely to be fully occluded, and so not available201

in scanned point clouds.202

Furthermore, as in [9], we recognise that (self-)similarities and symme-203

tries will always seriously challenge any registration technique in the built204

environment context. Therefore, we devise our algorithm so that it does not205

return only the most likely transformation but a ranked list of transforma-206

tions. This list (and resulting registrations) is then presented to the user in a207

graphical user interface so that s/he is able to effectively retrieve the correct208
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one even if it did not rank first — it will be shown that our algorithm effec-209

tively ranks transformations which makes this retrieval task simple and fast210

(the correct transformation is typically ranked first). This involvement of the211

user, which is made to respond to a very practical problem, is requested late212

in the process and is minor, particularly in comparison to the involvement213

required in [9].214

Finally, two variants of the algorithm are presented. The first adds a215

step to the process that considers all cloud points, with the goal to assess if216

this would further improve the results. The second variant is for the special217

case when the vertical axis is known a priori in the point cloud and mesh,218

which is often the case when using modern surveying technologies in the219

construction context; we call that method the 4.5-Plane Congruent Sets’220

(4.5-PlCS) method.221

3. Proposed method222

3.1. Overview223

The proposed method extends the 4-PCS method to planar patch-based224

registration. Accordingly, we look for special bases of four planes. We pro-225

pose to use as ‘4-plane base’ any set of four planes in which three planes226

are not pair-wise parallel (i.e., the minimum required to uniquely define a227

transformation), and the fourth plane is not co-planar (but can be parallel)228

to any of those three planes. Figure 1 shows an examples of 4-plane bases.229

Arguably, 3-plane bases are sufficient to be able to compute a rigid trans-230

formation. But, there are good reasons for suggesting to instead use 4-231

plane bases. Computationally-speaking, finding and matching bases of 3232

non-parallel planes is very simple, but, in the built environment, the planes233

in such bases are likely to be pair-wise perpendicular, and therefore there are234

likely to be numerous potential bases that can be matched in both datasets235

based on that simple criterion. This then means that the support calculation236

step that is subsequently conducted to assess whether all the data supports237

the rigid transformation resulting from each match, and that is the most238

expensive step computationally-speaking, will have to be conducted a large239

number of times in order to find the right match. In contrast, the proposed240

4-PlCS approach has the benefit that, although defining and matching such241

sets across two datasets is slightly more complex, fewer matches should be242

found, which means that the more expensive step of support calculation will243

only have to be conducted in fewer, more likely cases. Additionally, adding244
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Figure 1: Two examples of 4-plane bases extracted from BIM models and point clouds.

a 4th plane enhances not only the robustness of the base matching step, but245

also the accuracy of the rigid transformations computed from those matches.246

Naturally, based on that argument, one could consider using bases contain-247

ing even more than 4 planes. However, this has two disadvantages: (1)248

defining, finding and matching such sets becomes somewhat more complex;249

(2) occlusions, a possible small number of planes in the datasets, or other250

context-related specificities may reduce the likelihood of finding matching251

sets in both data. We note that these arguments are the same as those252

behind the 4-PCS method [1] that inspired our approach.253

Our proposed plane-based registration method is based on finding 4-plane254
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sets from the two 3D datasets to be registered that are approximately con-255

gruent, according to pre-defined internal geometric relationships. As in [1],256

approximate congruence means that the two 4-plane sets, or bases, can be257

aligned using rigid transformation, up to some allowed tolerance.258

The proposed methodology is summarized in Figure 2. It can work either259

using the point cloud or the 3D (BIM) model as a source1. First, planar260

patches are extracted from both the 3D (BIM) model and point cloud. For all261

these plane patches, their pairwise geometric relationships (i.e., parallelism,262

orthogonality, distance) are computed and stored in look-up tables for future263

use. Let’s call Pmodel and Pcloud the sets of planar patches extracted from264

the BIM model and point cloud, respectively. If the point cloud has fewer265

planes than the 3D BIM model, it is considered that the process is ‘point266

cloud driven’; otherwise it is ‘3D model driven’. From now on, let’s assume,267

as in Figure 2, that the process is ‘point cloud driven’.268

A maximum of nmodel distinct 4-plane bases are then randomly searched269

within Pmodel. Let’s call Qmodel = {qmodel} this set of 4-plane bases.270

For each 4-plane base qmodel, congruent 4-plane bases are then searched271

within Pcloud. A 4-plane base candidate qcloud is considered to be congru-272

ent to qmodel if its four planes (approximately) present the same geometric273

relationships as the four planes composing qmodel.274

Given a congruent pair of 4-plane congruent sets (4-PlCS) {qmodel, qcloud},275

the transformation matrix that transforms one to the other is computed and276

applied.277

Given the symmetries and repetitiveness found in the built environment,278

it is likely that many congruent sets do not actually lead to the correct279

transformation. So, the likelihood of the transformation derived from each280

4-PlCS to be the right now must be assessing by evaluating whether the rest281

of the datasets support it. To make this process as efficient as possible (i.e.,282

rejecting unlikely transformations as soon as possible), a two-step support283

evaluation method is proposed. The support is first evaluated using the pla-284

nar patches of the matching congruent bases, only. If the centroids of the285

cloud patches project inside the matched model patched, then plane support286

is assessed using all the extracted planar patches. Similar candidate trans-287

formations are then clustered, with the transformation with the strongest288

1In fact, it can also be employed to co-register two point clouds or two 3D (BIM) mesh
models.
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plane support selected as the cluster representative.289

Finally, all candidate transformations that provide sufficient support over-290

all are stored in a ranked list, so that they can be effectively presented to the291

user for final check and correction when the correct transformation was not292

ranked 1st. The following subsections detail the main stages of the proposed293

procedure.294

It must be highlighted that the proposed method does not require one295

dataset to be a subset of the other; it only requires that the two datasets296

overlap to the extent that matching 4-plane bases can be extracted in them.297

For each Model 
4-plane base

For each congruent 
Cloud 4-plane base

Extract nmodel 

4-plane bases

Find congruent 
4-plane bases

Extract 
Planar Patches

Extract 
Planar Patches

Compute + Apply Transformation Matrix

Point Cloud BIM Model

Calculate Plane Support

Good Plane Support?

Ranked list of likely transformations

yes

Calculate Centroid Support

Good Centroid Support?

Cluster Transformations

yes

Calculate Centroids RMSE

Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)

Figure 2: Diagram summarizing the proposed algorithm. This diagram shows the case
where the point cloud has fewer planes than the 3D BIM model.
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3.2. Extraction of planar patches298

Point Cloud Planar Patches. To extract planar patches from the point cloud,299

the planar (2D) descriptor defined in [21] is calculated for each point in the300

point cloud. The descriptor is based on the eigenvalues and eigenvectors301

of the covariance matrix, which is computed using the principal component302

analysis (PCA) method. The eigenvalues λi define an ellipsoid for represent-303

ing each neighbourhood. This ellipsoid can be described by three geometrical304

features: linear (α1D), planar (α2D) or scattered (α3D). In this work, we sim-305

ply use the planar descriptor α2D that is calculated using the formula [21]:306

α2D =
σ2 − σ3
σ1

(1)

where σi =
√
λi is the standard deviation along the eigenvector i.307

Once the planar descriptors have been calculated for all points in the308

point cloud, planar patches are extracted using an iterative process. At each309

iteration, the point with the highest α2D value (and not yet associated to310

a planar patch) is used as ‘seed’, and the plane direction defined by the311

eigenvector with the smallest associated eigenvalue. All the cloud points312

within a distance d from the seed point’s plane are added to the patch (d313

is typically set based on the laser scanner error). The process is reiterated314

using as new seed the point with the highest α2D value that has not yet been315

assigned to any patch. The iterations are continued until all points have been316

assigned to a patch.317

Each plane can finally be split into individual planar patches using a318

region-growing algorithm and an adequate distance proximity threshold ρ319

(here ρ = 50mm). Figures 1b and 1d show examples of segmented planar320

patches from point clouds. Alternatively, region-growing algorithms could321

be used directly for extracting planar patches, such as in [37].322

Finally, the centroid, normal vector and the area are calculated for each323

patch and stored in a look-up table. For the area of the planar patch, the324

plane is voxelised in 2D with voxel size ρ, and the area of occupied voxels is325

accounted.326

(BIM) Model Planar Patches. For the 3D (BIM) model, it is assumed that327

the surfaces of all objects are defined as triangular meshes. In the case of a328

BIM model, such representation is easily obtainable – and in fact it is com-329

monly used for real-time rendering of models using technologies like OpenGL.330

A region-growing algorithm is then used to extract the planar patches from331
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the model. At each iteration, the algorithm randomly picks a triangle not332

yet assigned to a patch and sets it as the seed of a new planar patch. Then,333

the neighboring triangles (i.e., those that share an edge with it) are consid-334

ered for extending the patch. If any of these triangles is co-planar to the335

patch, it is added to it. The patch growing process is iterated until no new336

triangle is added to the patch, at which point any remaining triangle is used337

as new seed. The overall process is itself iterated until all triangles have been338

assigned to a patch.339

Similarly to point cloud patches, the centroid, normal vector and area of340

each patch are computed and stored in a look-up table. Figures 1a and 1c341

show examples of segmented planar patches from the BIM model.342

Patch Pairwise Relationships. The original 4-PCS algorithm works by com-343

paring simple yet fairly discriminative geometric relationships between sets344

of four points (distances between the points, angles at intersection, etc.).345

Matching sets will exist if the four points exist in both datasets, which is346

likely if a well-defined transformation truly exists between them.347

In the case of plane-based registration, however, it is likely that planar348

patches that are systematically complete in the 3D (BIM) model data are349

only partially present in the point cloud data, due to clutter and lack of350

access during scanning (or possibly due to the fact that their construction is351

not yet complete). As a result, it is important to match 4-plane bases using352

geometric features that are not impacted, or are little impacted, by such data353

incompleteness. In consequence, it is proposed to work with the following354

geometric relationships that are computed between pairs of planar patches:355

• Angles βij between normals of pairs of planar patches {i, j}; and if356

βij = 0357

• The orthogonal projection distance bij of the centroid of one patch into358

the plane defined by the other.359

These pairwise relationships are calculated for all pairs of model planar360

patches and all pairs of point cloud planar patches, and stored in two cor-361

responding look-up tables. The look-up tables are stored as # {Pcloud} ×362

# {Pcloud} and # {Pmodel} × # {Pmodel} matrices enabling easy access and363

verification of the pairwise relationships.364

3.3. Finding Model 4-Plane Bases365

Given the list of model planar patches and pre-computed geometric re-366

lationships, sets of 4 planar patches are randomly selected from Pmodel and367
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are tested to see whether they constitute a valid 4-plane base set. According368

to the definition of a 4-plane base set in Section 3.1, each candidate set is369

considered valid if:370

• No plane is co-planar to any other: this means that no pair of planes371

{i, j} (approximately) verify: βij = 0 (with tolerance ±10o) and bij = 0372

(with tolerance ±0.2m).373

• Three planes are not pairwise parallel: this means that there exists a374

set of three planes {i, j, k} within the four-plane set such that: βij 6= 0,375

βjk 6= 0 and βik 6= 0 (with tolerance ±10o).376

We stop this search once nmodel valid 4-plane bases have been found (we use377

nmodel = 100), and call this set of bases Qmodel. While nmodel = 100 ensures378

that a range of different transformation matrices are considered (and will379

be shown to give good results), it also helps limit the overall computational380

time. If the algorithm fails to find the right transformation from this initial381

set, a second pass can be conducted using another set of nmodel valid 4-plane382

sets, until all possible valid sets have been considered.383

Note that, instead of selecting the patches completely randomly (like384

points are selected randomly in the original 4-PCS algorithm), a selection385

weight can be used, and can be set based on the area of the planar patch, so386

that larger planar patches are more likely to be selected in candidate 4-plane387

sets. In our implementation, we discard planes smaller than 0.5m2.388

3.4. Finding Congruent Point Cloud 4-Plane Bases389

For each valid 4-plane base qmodel, congruent 4-plane bases are searched390

in Pcloud.391

For this, pairs of planar patches satisfying the same angular relation-392

ship β12 (within tolerance) as the planar patches pm1 and pm2 of qmodel are393

extracted from Pcloud; and similarly, pairs of planar patches with the same394

angular relationship β34 as the patches pm3 and pm4 from qmodel are extracted395

from Pcloud.396

Each combination of two pairs of patches from both groups makes up397

a candidate 4-plane base, and we call this set of candidate bases Q̃cloud.398

Each base in Q̃cloud is considered congruent if the remaining four pairwise399

angular relationships β13, β14, β23 and β24 are verified, and no distance bij is400

null, within tolerance. We call Qcloud the set of candidate congruent 4-plane401

bases.402

From each pair of congruent bases {qmodel, qcloud}, the rigid transformation403
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between qmodel and qcloud is computed as:404

argmin
t,R

qmodel − (R ∗ qcloud − t) (2)

where R is the rotation matrix obtained using the normal vectors of the405

planar patches, and t is the translation vector obtained using the intersection406

points defined by the 3 non-planar patches in both bases.407

3.5. Evaluate Support408

The support for each candidate transformation is calculated in four stages409

detailed in the following sub-sections:410

1. Centroid Support : considering only the four centroids of the congruent411

base planar patches;412

2. Plane Support : considering all point cloud planar patches;413

3. Clustering : not technically a support stage, this stage aims at clustering414

similar transformations;415

4. Point Support (optional): considering the actual point cloud data.416

3.5.1. Centroid Support417

The level of support is first evaluated by assessing if the centroids of the418

four planar patches making up a point cloud congruent base qcloud project419

inside the planar patches of the matching model base qmodel (we use a similar420

approach to [23]). If any of the four centroids does not project inside the421

matching model patch, then the congruent base is discarded. We call Q1
cloud422

the set of congruent bases, i.e., transformations, that pass this test.423

Note that, for this test, it is important to project the centroid of the point424

cloud patches on the model patches, and not the opposite. This is because425

of possible point cloud data incompleteness, as discussed earlier.426

3.5.2. Plane Support427

The level of support is then evaluated by counting the number of planar428

patches from Pcloud (not just those of the congruent sets) supporting the429

transformation matrix. A cloud planar patch pcloud is considered to support430

the transformation if:431

• The projecting distance d of the patch’s centroid to the closest model432

planar patch pmodel is lower than a threshold dmax (which can be set433
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based on the precision of the laser scanner at a typical scanning dis-434

tance; e.g., dmax = 2 × precision), and this projection is inside the435

patch pmodel.436

As in the Centroid Support stage, it is important to project the centroid437

of the point cloud patches on the model patches, and not the opposite.438

• The point cloud and model patches have a similar orientation, i.e.,439

ncloud · nmodel ≥ dotmin, where ncloud and nmodel are the normal440

vectors of the point cloud patch and model patch respectively, and441

dotmin is the similarity threshold (we use dotmin = 0.9).442

Once individual planar patches have been matches, the overall plane support443

is given by the percentage:444

Γπ =
# {P ′cloud}
# {Pcloud}

(3)

where P ′cloud is the set of matched cloud planar patches, and # {·} is the445

cardinality operator.446

We consider that a given transformation has sufficient plane support, if447

Γπ ≥ Γmin, where we typically use Γmin = 20% to account for a possible448

large amount of clutter (but, a higher value could be considered in cases of449

low levels of clutter). We call Q2
cloud the set of transformations (i.e., 4-PlCSs)450

that have sufficient plane support.451

In addition, the RMSE of the projecting distances d of the patch centroids,452

called RMSEc, is computed at this step to provide an additional estimation453

of the quality of the transformation.454

3.5.3. Clustering similar transformations455

So far, the approach did not consider whether two or more 4-PlCSs actu-456

ally lead to (approximately) the same transformation. These similar trans-457

formations should thus be grouped. For assessing the similarity between458

two rigid transformations, we use the Homogeneous Transformation Matrix459

Distance Metric D of [19].460

Given L and N both 4 × 4 homogeneous transformation matrices of the461

form:462
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L =


nx ox ax tx
ny oy ay ty
nz oz az tz
0 0 0 1


, the strength of the matrix L, S(L), is defined as:463

S(L) =
√
t(L)2 + (αΘ(L))2 (4)

where t(L) and Θ(L) are the translation and rotation compounds of L:464

t(L) =
√
t2x + t2y + t2z (5)

Θ(L) = arctan

√
(oz − ay)2 + (ax − nz)2 + (ny − ox)2

(nx + oy + az − 1)
(6)

and α = 2.632 Å/rad is the scaling factor transposing angle into distance.465

The Homogeneous Transformation Matrix Distance Metric (HTMDM)466

between N and L, D(L,N) is then calculated as:467

D(L,N) = S(L−1N) (7)

The closer D(L,N) is to 0, the more similar the matrices are.468

Once the distances between all possible transformations have been com-469

puted, these are grouped using hierarchical clustering. The segmentation of470

the groups during hierarchical clustering is done using the mean distance471

between the links (formed by the similarity distance) as threshold. Figure 3472

shows the clusters obtained for an example set of transformations.473

Finally, the representative transformation matrix from each cluster is474

selected as the one with the largest number of supporting planes. In case of475

a tie, the first computed transformation matrix is selected. We call Q3
cloud476

the set of unique transformations resulting from this clustering stage.477

3.6. Algorithm Variants478

Two different variants of the proposed algorithm are now proposed with479

the aim of potentially enhancing the algorithm’s performance.480
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Figure 3: Dendrogram picturing the different final clusters. Colours representing the same
cluster.

3.6.1. Point Support481

As is commonly considered in prior works, an additional support stage482

can be considered that extends the plane support assessment to all cloud483

points. Here, we suggest to simply extend it to those points associated to484

the matched cloud planar patches; not just their centroids. For this, similarly485

to the plane support, the cloud points of each supporting cloud planar patch486

pcloud are checked to satisfy whether they are close to a model planar patch487

and project inside it. Point support is then measured using the two metrics488

γπ and RMSEπ calculated as indicated in Eq. 8 and 9 respectively, where N489

is the number of points associated to matched cloud planar patches, Nπ is the490

subset of those points that are close to and project inside the matching model491

patch, and di is the orthogonal distance of the point i on the corresponding492

matching model patch π.493

γπ =
Nπ

N
(8)

RMSEπ =

√√√√ 1

Nπ

Nπ∑
i=1

(di)
2 (9)

We consider that a given transformation has sufficient point support if494

γπ ≥ γmin, where we use γmin = 40%. RMSEπ is then used for ranking495

the well-supported transformations (see below). We call Q4
cloud the set of496

transformations that have sufficient point support.497

3.6.2. Known Vertical Axis - 4.5 PlCS498

Many scanning devices, in particular modern laser scanners, now come499

with sensors (dual-axis compensators and gravitometers) that enable them500
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to align the acquired data accurately horizontally. This can be exploited in501

the proposed 4-PlCS algorithm by adding a constraint to ensure the rotation502

obtained from the congruent set is constrained to a rotation around the503

vertical axis. For this, a virtual infinite horizontal plane with its normal504

vector pointing upwards can be added to 4-plane sets, effectively turning505

them into ‘4.5-plane bases’ – because the added plane is not defined exactly506

along the vertical axis; it is just an orientation. Accordingly, the method can507

be named 4.5-PlCS.508

The potential advantage of the 4.5-PlCS algorithm over the 4-PlCS one509

is that it can further reduce the number of cloud bases found congruent to510

the model bases (Qcloud), thereby increasing the efficiency of the approach511

without impacting its effectiveness.512

4. Results Presentation513

Achieving a fully automatic registration procedure is a significant chal-514

lenge. Symmetry and self-similarities of the scanned scene, which is ex-515

tremely common in the built environment, are likely to lead to several trans-516

formations having significant support from the data. Sometimes, even the517

optimal one according to the proposed process may actually not be the cor-518

rect one.519

Therefore, instead of returning only the top ranked transformation matrix520

and claiming that registration can be fully automated (and yet make errors),521

we present to the user a ranked list of likely transformations, and let the user522

visualise their respective registration result and select the correct one. The523

ranking is based on, in order of priority, the number of supporting planes524

(Plane Support) and RMSEc.525

Table 1 gives an example of five possible transformations found automat-526

ically by the system and suggested to the user. It can be seen that the five527

solutions have good plane and point support. In this example, the highest528

ranked transformation is in fact the correct one. While it does have stronger529

plane support than the others, they do all have good support. This really530

justifies the potential value of such a user interface, to easily correct any531

‘error’ from the automatic algorithm.532
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5 top ranked transformations:

Rank 1st

Plane Support Γπ 92% (121)

Plane Support RMSEc (mm) 0.04

Rank 2nd

Plane Support Γπ 78% (121)

Plane Support RMSEc (mm) 0.2

Rank 3rd

Plane Support Γπ 76% (121)

Plane Support RMSEc (mm) 0.2

Rank 4th

Plane Support Γπ 73% (121)

Plane Support RMSEc (mm) 0.08

Rank 5th

Plane Support Γπ 73% (121)

Plane Support RMSEc (mm) 0.09

Table 1: Example of ranked transformations presented to the user. The ranking is done
according to (1) plane support Γπ (2) and RMSEc. For Γπ, the number in brackets is the
total number of planar patches extracted from the point cloud. The colour information is
the cloud to mesh distance (in m), see that the colours are relative distance between min
and max values.
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5. Experiments and discussion533

5.1. Datasets534

The 4-PlCS and two variant algorithms have been tested with 5 different535

datasets, including simulated data using the 3D (BIM) model as scanning536

environment, and real data from actual construction sites (see Figure 4).537

The main idea of using both types of datasets is to use the simulated one to538

test the theoretical base of the proposed algorithm, while the real datasets539

covered the difficulties and the efficiency of the method. The five scenes540

represent different types of built environments, from housing to industrial541

and commercial building, with data acquired indoors or outdoors. For the542

simulated cases, the point cloud was generated by generating points in the543

3D mesh surfaces, and then, adding σ = 2mm noise, which is representative544

of many current laser scanners. Note that subsampling is not employed at545

any stage here, either for the point clouds or the 3D models. Table 2 contains546

information for each dataset, including: size of the scene, size of the point547

cloud, and number of planar patches extracted from the 3D (BIM) model548

and the point cloud.549

The scenes present various challenges. The housing datasets (Figure 4(a)550

and Figure (b)) present many large planar surfaces. In contrast, the in-551

dustrial and commercial environments have steel or concrete structures that552

have planar surfaces that are comparatively smaller (except for the floors and553

ceilings). As these are typical scenes from the built environment, it is worth554

noting that they all present some significant levels of symmetry and/or self-555

similarity. Furthermore, for the real datasets, the laser scans do not cover556

the whole environment defined in the 3D (BIM) model, and they also con-557

tain many points from objects that do not exist in the 3D model. Finally,558

it is worth noting that the dataset UW-E5 is the University of Waterloo559

Engineering V dataset used in [7].560

Dataset House-1 House-2 Steel-1 UW-E5 Mercury-1

M
o
d

el Size (m) 24× 29× 7 32.5× 24× 10.5 30.5× 45.75× 8 105× 56× 36 91× 97.5× 17
# {Pmodel} 89 207 278 756 866

P
oi

n
t

C
lo

u
d Size (m) 24× 29× 7 32.5× 24× 10.5 30.5× 45.75× 8 93× 56× 19 50× 16× 8

Number of points 7,365,670 10,603,236 29,975,000 1,031,815 17,517,737
# {Pcloud} 121 342 878 141 97

Table 2: Information about the five datasets after the extraction of planar patches.
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(a) House-1 (b) House-2 (c) Steel-1

(d) UW-E5 (e) Mercury-1

Figure 4: 3D BIM Model (top), Point clouds coloured by planarity descriptor Eq. 1
(bottom). Scale ranges from red, high value, to blue, low value.

5.2. Evaluating metrics561

Apart from the above mentioned transformation support metrics (number562

of planes, RMSE, and rank), we compare the ranked transformation matrices563

with the ground-truth transformation. Note that all ground-truth transfor-564

mation matrices are either exact (for the simulated datasets) or the result of565

fine registration procedures (for the real datasets). The comparison is done566

separately using the angular error (in degrees), and the translation error (in567

mm) 10.568

εR =
∣∣θGT − θrank∣∣

εT =
∥∥TGT − T rank

∥∥ (10)

where θGT and θrank are the quaternion rotation angles of the ground truth569

and the ranked transformations, respectively, and TGT and T rank are the570

translation vectors of the ground truth and the ranked transformation, re-571

spectively.572

5.3. Simulated data573

Table 3 summarises the results for the three simulated datasets. The574

table first shows the number of tested 4-plane bases (i.e., transformations)575
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at different stages of the process. At the beginning, the number of candidate576

bases is large, but matching based on the intrinsic geometric relationships577

efficiently identifies a much lower set of congruent bases (Qcloud), in our578

cases by a factor of more than 20. The complementing ‘centroid check’ step579

further reduces the number of congruent sets by a further factor of 200 or580

more. Altogether, these two steps enable a significant reduction of potential581

valid candidates before wider plane support has even been assessed.582

The computation time section reports the times spent for each of the main583

processing stages, within brackets the time spent per input base. These times584

show that the stages are adequately done in order of complexity, so that the585

most computationally-expensive stages are applied only on a reduced number586

of most likely transformations.587

The third section of the table shows that, while in each case many unique588

transformations (>30) received good plane support, the correct transforma-589

tion is actually always ranked first by the automatic approach. For compar-590

ison the table also shows the second ranked transformation. It can be seen591

that in all cases the 1st (correct) and 2nd ranked transformations both have592

good plane support, but the 1st (correct) ranked transformation does have a593

more significant one. Regarding the quality of the best transformation, its594

comparison with the known ground-truth shows very positive results, with595

very small εR and εT values. Figure 5 shows the distance field between the596

point cloud and the 3D model for the first and second ranked transformations597

for the three simulated experiments above. The translation error reported598

in table 3 is clearly noticeable in these colour-coded representations. Con-599

sidering that the proposed approach is only a coarse registration method, it600

is fair to assume that a subsequent fine registration method (e.g., ICP-type)601

would lead to very good results.602

5.4. Real data603

The real datasets represent typical situations faced in practice, with oc-604

clusions, significant self-similarities, and incomplete data. Indeed, in both605

cases, the point cloud only covers a part of the facility represented by the 3D606

model. The UW-E5 dataset contains significant self-similarities (each floor is607

the same, and the column structure is uniform); as a result, it was expected608

that several transformations would have very high support, although only one609

of them is the correct one. In the case of the Mercury-1 dataset, symmetry610

is encountered with a repetitive column and ceiling structure. Furthermore,611

both point clouds include some large planar surfaces that are not present612

23



House-1 House-2 Steel-1
Number of tested 4-plane bases:

#{Q̃cloud} 807,740 31,187,176 7,592,392
# {Qcloud} 28,804 740,936 343,296
# {Q1

cloud} 130 2,851 964
# {Q2

cloud} 70 465 488
# {Q3

cloud} 46 87 123
Computation time (s):

Congruence (Q̃cloud → Qcloud) 3.40 80.34 38.77
(4.21e-6) (2.58e-6) (5.11e-6)

Centroid Support (Qcloud → Q1
cloud) 49.03 1,344.13 813.66

(1.7e-3) (1.81e-3) (2.37e-3)
Plane Support (Q1

cloud → Q2
cloud) 9.04 623.33 710.64

(0.07) (0.22) (0.74)
Total 96.03 3,126.93 2,808.61

Correct/Selected transformation:
Rank 1st 1st 1st

Plane Support Γπ 92% (121) 77% (342) 78% (878)
Plane Support RMSEc (mm) 0.04 0.3 1.1
εR (o) 2.3e-4 2.6e-3 6.6e-3
εT (mm) 0.09 5.7 7.1

Other transformation:
Rank 2nd 2nd 2nd

Plane Support Γπ 78% (121) 63% (342) 70% (878)
Plane Support RMSEc (mm) 0.2 0.1 1.2
εR (o) 1.9e-4 5.1e-4 7.1e-3
εT (mm) 295.3 293.2 54.1

Table 3: Results obtained for the three simulated datasets. For the computation times,
the numbers in brackets are the times per input 4-plane base at that stage. For the plane
support Γ, the number is brackets is the total number of planes in Pcloud.

in the 3D model, making these datasets a real challenge for the proposed613

algorithm.614

Results for the top 5 ranked transformations are gathered in Tables 4 and615

5. The proposed algorithm finds several plausible transformations. But, in616

both cases, the correct transformation is ranked 2nd.617

For the UW-E5 case, looking at the figures in Table 4, the user would618

actually easily dismiss the 1st, 3rd, 4th and 5th ranked transformations be-619

cause they are clearly misplaced in translation. For example, the 1st ranked620

transformation is correct in terms of rotation but it is translated by one floor.621
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(a) House-1

(b) House-2

(c) Steel-1

Figure 5: Cloud to mesh distance (in m.) for the proper transformation matrix (left) and
the second best transformation matrix (right). Colours are relative to the minimum and
maximum values of the cloud to mesh distance.

The fact that all 5 top ranked transformations have similar levels of support622

demonstrates the high level of self-similarity within the dataset, which makes623

finding the correct registration fully automatically really challenging. This624

justifies the need for a quick, yet critical intervention by the user at the end625

of the process. Looking at the correct transformation, it can be seen, once626

again, that it is very close to the correct one (εR = 0.12◦ and εT = 100.6mm),627

especially when considering that no fine registration has been applied yet.628

For the Mercury-1 case, the correct transformation is also ranked 2nd,629

although it can be seen that it has the same plane support with only a630

lightly larger RMSEc than the top ranked transformation. Overall, all top 5631
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transformations have the correct rotation, but are translated at different lo-632

cations in the 3D model. The 4th and 5th ranked transformations have lower633

plane support than the first three, but lower RMSEc (i.e., fewer planes are634

matched, but they are better matched). These results show again how sym-635

metries and self-similarities in the built environment can make automatic636

registration extremely challenging, and final visual decision by the user po-637

tentially critical. Nonetheless, here as well, the correct transformation can638

be easily identified by the user through a quick visual inspection.639

5.5. Variant: Point support640

One possible variant of the proposed algorithm is to extend the support641

assessment to the whole or a portion of the point cloud, as is commonly done642

in other registration approaches. Here, we propose that Point Support only643

consider those points that belong to matched patches. As can be seen in Table644

6, while this reduces the number of likely transformations, this reduction is645

typically small (5-10%), and it does not improve the final ranking at all (we646

show the first three ranked transformations, but this is true even for the first647

five and more). Considering that Point Support is also a computationally648

expensive process (see Table 6), it appears that this step really does not649

bring much additional value, with the initial approach already performing650

very well with Plane Support only.651

5.6. Variant: 4.5 PlCS652

The results for the 4.5-PlCS method are presented in Table 7 for all the653

datasets. Thanks to the additional knowledge/constraint of the vertical axis,654

the 4.5-PlCS method reduces the initial number of bases to fewer congruent655

bases than the 4-PlCS approach, as anticipated (see Section 3.6.2). How-656

ever, it is interesting to see that the Centroid Support stage is very powerful657

because, after that stage, the 4.5-PlCS and 4-PlCS methods have essentially658

the same number of bases and the remaining stages perform similarly, if not659

exactly in the same way, which ultimately leads to the same final list of660

transformations organised in the exact same ranking.661

As a result of the more effective reduction in the number of congruent662

bases in the first stage, the 4.5-PlCS method presents non-negligible reduc-663

tions in computation time (approx. 20%).664

Overall, this shows that, when the vertical axis is known, the 4.5-PlCS665

method is certainly a worthwhile alternative to the 4-PlCS method, compu-666

tationally speaking. But, from a quality viewpoint the 4-PlCS performs just667
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Number of tested 4-plane bases / transformations:

#{Q̃cloud} 7,002,024
# {Qcloud} 261,962
# {Q1

cloud} 368
# {Q2

cloud} 172
# {Q3

cloud} 44
Computation time(s):

Congruence (Q̃cloud → Qcloud) 36.4 (5.20e-6)
Centroid Support (Qcloud → Q1

cloud) 788.5 (2.37e-3)
Plane Support (Q1

cloud → Q2
cloud) 102.5 (0.28)

Total 1,248.21
5 top ranked transformations:

Rank 1st

Plane Support Γπ 48% (141)
Plane Support RMSEc (mm) 6.2
εR (o) 0.12
εT (mm) 4,262.0

Rank 2nd

Plane Support Γπ 46% (141)
Plane Support RMSEc (mm) 6.4
εR (o) 0.12
εT (mm) 100.6

Rank 3rd

Plane Support Γπ 43% (141)
Plane Support RMSEc (mm) 5.6
εR (o) 0.12
εT (mm) 5,203.1

Rank 4th

Plane Support Γπ 38% (141)
Plane Support RMSEc (mm) 7.1
εR (o) 0.12
εT (mm) 2,986.9

Rank 5th

Plane Support Γπ 36% (141)
Plane Support RMSEc (mm) 7.0
εR (o) 0.13
εT (mm) 19,538.8

Table 4: Results obtained for UW-E5 dataset. The correct user-selected transformation
matrix is ranked 2nd (highlighted in colour).
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Number of tested 4-plane bases / transformations:

#{Q̃cloud} 342,309
# {Qcloud} 16,747
# {Q1

cloud} 52
# {Q2

cloud} 52
# {Q3

cloud} 21
Computation time (s):

Congruence (Q̃cloud → Qcloud) 2.6 (7.67e-6)
Centroid support (Qcloud → Q1

cloud) 70.3 (4.2e-3)
Plane Support (Q1

cloud → Q2
cloud) 9.2 (0.18)

Total 118.52
5 top ranked transformations:

Rank 1st

Plane Support Γπ 57% (97)
Plane Support RMSEc (mm) 19.8
εR (o) 0.4
εT (mm) 5,836.3

Rank 2nd

Plane Support Γπ 57% (97)
Plane Support RMSEc (mm) 22.8
εR (o) 0.01
εT (mm) 181.1

Rank 3rd

Plane Support Γπ 55% (97)
Plane Support RMSEc (mm) 20.5
εR (o) 0.39
εT (mm) 5,197.0

Rank 4th

Plane Support Γπ 47% (97)
Plane Support RMSEc (mm) 9.1
εR (o) 0.40
εT (mm) 4,954.6

Rank 5th

Plane Support Γπ 45% (97)
Plane Support RMSEc (mm) 11.5
εR (o) 0.38
εT (mm) 4,114.9

Table 5: Results obtained for Mercury-1 dataset. The correct user-selected transformation
matrix is ranked 2nd (highlighted in colour).
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as well, so that the knowledge of the vertical axis is not critical at all for the668

method to work effectively.669

5.7. Comparison with the standard 3-PlCS670

In Section 3.1, we claim that, similarly to the original 4-PCS method,671

using 4 planar patches with our method (4-PlCS) should be better than using672

3 planar patches (3-PlCS), which is the minimum required for computing a673

rigid transformation. Table 8 reports the results obtained with the 3-PlCS674

method, for comparison with those obtained with the 4-PlCS one.675

Generally, the clear advantage of the 3-PlCS method is that it starts676

with significantly fewer candidate bases. However, the lack of discriminatory677

power of the 3-plane bases is clearly felt in the following stage where most678

cloud bases are typically found congruent with some model base. And, in679

four of the datasets, the 4-PlCS reduces the number of likely transformations680

to lower numbers than the 3-PlCS method once Centroid Support is assessed.681

Furthermore, 4PlCS does always at least as well as 3PlCS. First, the correct682

transformation is ranked similarly in four datasets, and one rank better (1st)683

in the case of the Steel-1 dataset. Second, the registration error against the684

ground truth is better (sometimes only slightly) in four of the datasets, while685

it is only worse in one case (House-2) with an error that remains very small686

(εR=2.5e-3 deg, and εT=5.9 mm).687

However, despite the discriminatory power of the 4-plane bases, the re-688

ported computation times show that the 4-PlCS method is not necessarily689

faster. While it is faster for the real dataset Mercury-1, it is slower for all690

others. This poor computational performance appears to be due to the fact691

that the additional time required by the 4-PlCS method to compute Cen-692

troid Support for a larger initial number of bases remains larger than the693

subsequent gains achieved by its superior discriminatory power that enables694

a more effective reduction of congruent bases. In the case of the House-2695

dataset, this is compounded by the fact that the 4-PlCS method starts with696

almost 100 times more bases than the 3-PlCS method, while for the other697

datasets this ratio never exceeds 25.698

Overall, these results demonstrate the discriminatory power of the 4-PlCS699

method, which enables the algorithm to rapidly narrow down the search to700

few transformations, at a computational cost that is however not demonstra-701

bly favourable. Future work should focus on this aspect.702
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6. Conclusion703

This paper proposed a new method for the coarse registration of as-is704

dense point clouds with 3D BIM/mesh model. The proposed ‘4-plane congru-705

ent sets’ method is an adaptation of the state-of-the-art ‘4-points congruent706

set’ technique with focus on planes as geometric features. The value of using707

planes in this context is multiple. First, planes are very common features708

of the human-built environment and so, it is very likely that 4-plane bases709

(as defined in this work) be present in typical datasets. Second, with the710

same intention as Theiler et al. [49] who employ point features, using bases711

made up of plane features significantly reduces the number of congruent sets712

requiring support evaluation.713

Thanks to its robust support assessment (particularly due to its use of714

plane patches as opposed to simply planes), the proposed technique is able715

to retrieve the correct registration even in scenes presenting significant levels716

of symmetry, self-similarity and clutter. Nonetheless, we ensure that it does717

not just return the best transformation but a ranked list of them, so that a718

user can easily select the correct one in case it is not ranked first.719

The performance of the proposed approach was evaluated with experi-720

ments conducted using several datasets, with different topologies and levels721

of complexity (self-similarity, clutter, partial data). In those experiments,722

the correct registration was typically the highest ranked one or among the723

top two ones. Furthermore, that ‘correct’ transformation is always very close724

to the ground-truth registration, meaning that a follow-up fine registration725

would easily achieve a very close to optimal result. The experimental results726

particularly show the value of the Centroid Support stage to reject unlikely727

transformations.728

Although not demonstrated here, it is worth noting that the proposed729

registration approach can also be used using ‘anchor’ planes in such a way730

that deviations can be subsequently analysed on the other surface, including731

planes, for example for quality control during construction. This can be eas-732

ily done by registering the point cloud against a 3D (BIM) model containing733

only those anchor planes. For example, when controlling MEP works, one734

could force the registration to use only planar patches from structural com-735

ponents only (this kind of semantic information is easily obtainable in a BIM736

model). Finally, we note that the proposed approach is also applicable to737

the registration of two point clouds.738

Experiments comparing the proposed 4-PlCS approach with the more nat-739
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ural 3-PlCS approach showed the value of adding a 4th plane to effectively740

narrow down the search to few highly likely transformations. However, this741

reduction in the number of candidate bases did not seem to deliver signif-742

icant computational benefits overall, and in some cases came at additional743

computational cost.744

In light of the results reported, several strategies could be considered to745

further improve the performance, in particular speed, of the algorithm:746

• Clustering of similar transformations could be applied one step earlier747

so that Centroid Support (a step that significantly impacts the compu-748

tational performance of the 4-PlCS method) is assessed for significantly749

fewer transformations.750

• All Support stages (Centroid, Plane, and Point) require numerous751

point-model distance and intersection calculations that carry signifi-752

cant computational cost. Similarly to [30], a discretization of the tar-753

get surface’s distance field over a 3D grid could be used to significantly754

speed up all these calculations, at the cost of some approximation of the755

calculated distances. This could provide significant benefits to reduce756

the computational cost of the Centroid Support stage in comparison to757

other stages.758
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