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Abstract 10 

There is a growing need for tools automating the processing of as-built 3D laser scanned data, and more 11 

particularly the comparison of this as-built data with planned works. This paper particularly considers 12 

the case of tracking MEP components with circular cross-sections, which essentially include pipes, and 13 

some conduits and ducts. Discrepancies between the as-built and as-planned status of pipes, conduit 14 

and ductwork result from changes that occur in the field and that are either unnoticed (human error) or 15 

not reflected in the 3D model. Previous research has shown that the Hough transform, with judiciously 16 

applied domain constraints, is a practical and cost-effective approach to find, recognize and reconstruct 17 

cylindrical MEP works within point clouds automatically. Previous research has also shown that “Scan-18 

vs-BIM” systems that are based on the geometric alignment and comparison of as-built laser scans with 19 

as-designed BIM models can effectively recognize and identify MEP components as long as they are 20 
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constructed near their as-planned locations. The research presented in this paper combines the two 21 

techniques in a unified approach for more robust automated comparison of as-built and as-planned 22 

cylindrical MEP works, thereby providing the basis for automated earned value tracking, automated 23 

percent-built-as-planned measures, and assistance for the delivery of as-built BIM models from as-24 

designed ones. The proposed approach and its improved performance are validated using data acquired 25 

from an actual construction site. The results are very encouraging and demonstrate the added value of 26 

the proposed integrated approach over the rather simpler Scan-vs-BIM system. The two main areas of 27 

improved performance are: (1) the enabled recognition and identification of objects that are not built at 28 

their as-planned locations; and (2) the consideration for pipe completeness in the pipe recognition and 29 

identification metric. 30 
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1 Introduction 36 

Traditional progress tracking practice depends on visual inspections, and daily or weekly reports created 37 

based on those inspections. The inspectors’ duty is to ensure that work meets contract specifications 38 

and schedule. They use checklists during inspections and logs to report deficiencies that are discussed at 39 

follow-up weekly meetings [1]. This traditional practice relies heavily on the inspectors’ personal 40 

judgment, observational skills, and experience which come with a high probability of incomplete and 41 

inaccurate reports. In the early 2000’s, the Architectural-Engineering-Construction/Facility Management 42 

(AEC/FM) industry realized the urgent need for fast and accurate project progress tracking. 43 

In response to this need, researchers have studied several emerging technologies for automating project 44 

inspection. These include Radio Frequency Identification (RFID) [2][3][4][5][6][7], Ultra-Wide Band 45 

(UWB) [8][9][10][11], Global Navigation Satellite System (GNSS) [6][12], 2D imaging 46 

[13][14][15][16][17][18][19], Photogrammetry [20][21][22][23][24][25][29], and three-dimensional (3D) 47 

Terrestrial Laser Scanning (TLS) [22][26-54]. All these approaches hold much promise for automated 48 

progress tracking, however they have so far only focused on a few areas of application: progress in the 49 

supply chain (prefabrication and laydown yards), workers’ productivity (through location and action 50 

tracking), and tracking structural work progress and quality. One of the important areas where tracking 51 

could provide significant value is the tracking of Mechanical, Electrical and Plumbing (MEP) components, 52 

which includes piping installation. The benefits of efficient tracking of MEP components’ installation 53 

include:  54 

1) Early identification of deviations between the as-built and as-design situations, so that required 55 

remedial actions can be taken before high rework costs are experienced;  56 
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2) Faster acceptance of work by the main contractor, so that sub-contractors can be paid on time 57 

and even earlier than is common practice; and  58 

3) Assistance through automation of some of the steps involved in updating Building Information 59 

Modeling (BIM) models to reflect as-built works that deviate or add to original BIM models, but 60 

will not require rework. Indeed, in many cases liquidated damages and an updated as-built BIM 61 

model may be preferable to rework. 62 

However, tracking of MEP works is made difficult by significant discrepancies between the as-built and 63 

as-planned status of MEP components that result from changes that occur in the field that are either 64 

unnoticed (human error) or not reflected in the design documents. These unreported discrepancies also 65 

challenge the delivery of reliable as-built design documents (e.g. as-built BIM model) to clients.  66 

Among the technologies discussed earlier,  3D TLS has been considered by many as the best available 67 

technology to capture 3D information on a project with high accuracy and speed. It holds much promise 68 

in a variety of applications in the AEC/FM industry [26][27][28][29][30]. For example, it has already been 69 

proven to be valuable for construction managers to help them track progress, control quality, monitor 70 

health, as well as create as-built 3D models of facilities [31-54]. The best demonstration of this value has 71 

been the exponential growth of the laser scanning hardware and software market in the last decade. 72 

Much of this growth is now focusing on the interface between laser scanned data and BIM models. 73 

Nonetheless, the recognition (and identification) of objects in 3D TLS data remains an open challenge 74 

with marketed software offering only semi-automated, and often limited solutions. This is the case of 75 

MEP components, including pipes. Robust automated recognition and tracking of cylindrical MEP 76 

components would enable: 77 



5 

 

1. Improved identifications of discrepancies between as-planned and as-built conditions of MEP 78 

components, so that corrective actions can be taken in a timely manner. This is particularly 79 

important for mechanical contractors, since an increasing number of them are using BIM 80 

models for fabricating pipes and ductwork.  81 

2. Having accurate as-built conditions of MEP components, so that mechanical remodelings can be 82 

planned confidently from the BIM model, and thus help prevent material wastes and rework, 83 

hereby saving cost and time.  Furthermore, there is a growing interest and demand  from 84 

industry for implementing BIM models for Facilities Management. Having accurate as-built 85 

conditions of MEP components included in BIM models would allow facility managers to 86 

integrate their building operation and maintenance schedules with BIM models, which would 87 

allow them to locate and maintain these components efficiently. 88 

Recent research in the recognition of MEP works in 3D TLS data has shown that the Hough transform, 89 

with judiciously applied domain constraints, is a practical approach to automatically find, recognize and 90 

reconstruct cylindrical objects (e.g. pipes) from point clouds [48][49]. However, this approach is not 91 

sufficient on its own to identify objects to support reliable progress tracking and quality control. In 92 

parallel, previous research has also shown that “Scan-vs-BIM” systems, that are based on the geometric 93 

alignment and comparison of as-built laser scans with as-designed BIM models, can effectively recognize 94 

and identify in point clouds 3D objects contained in the BIM models [31][32][33]  – as long as they are 95 

constructed near their as-planned locations. The research reported here combines these two 96 

approaches in a single framework to better meet the need for automated comparison of built and 97 

planned cylindrical MEP components, hereby providing the basis for automated earned value tracking, 98 

automated discrepancy identification and calculation of “percent built as-planned”, and assistance for 99 

the generation as-built BIM models.  100 



6 

 

This paper is organized as follows. Section 2 first reviews significant research and developments in the 101 

area of object recognition in 3D point clouds. Our novel approach for the recognition and identification 102 

of cylindrical objects in 3D point clouds is described in Section 3. Experimental results are reported in 103 

Section 4 and the performance of the new approach discussed in Section 5. 104 

2 Background 105 

2.1 3D point cloud data processing 106 

Using 3D point clouds produced by laser scanners for generating as-built information is becoming a 107 

standard practice in construction, rehabilitation and facilities maintenance in areas ranging from process 108 

plants to historical preservation. Building on basic research in robotics and machine vision, research on 109 

automated as-built generation goes back over twenty years (e.g. [13]).  110 

Acquisition of 3D information with laser-scanning (but also structured lighting and photogrammetry) has 111 

led to significant research on developing processes and algorithms for processing the 3D point cloud 112 

data, with focus on different applications. These include: as-built modelling [29][34][36] 113 

[40][41][42][43][44] [48][49][50][51], quality assessment of existing infrastructure and construction sites 114 

[25][35][37][45][54], progress tracking [20][21][22][23][24] [31][32][33][46][47][52][53], and structural 115 

health monitoring [38] [39].  Some of the knowledge thereby created has influenced or been adopted by 116 

practitioners. Yet, in the commercial sphere, the level of automation of current software solutions for 117 

processing TLS data, and in particular for recognizing objects in TLS data, remains limited. 118 

With the advent of 3D BIM, many of the newer approaches actively use the (3D) information contained 119 

in BIM models to develop supervised object detection and recognition algorithms that more effectively 120 
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process the point cloud data [20][21][31][32][27][33][35][46][47] [52][53][54]. Reliance of these 121 

approaches on prior BIM information certainly imposes limitations; but BIM is very rapidly being 122 

adopted across the industry for building design, construction and asset management, so that these 123 

limitations will diminish over time. 124 

Focusing specifically on cylindrical MEP components, despite some significant effort in the processing of 125 

point clouds generated by TLS [48][49][50] or low-cost photogrammetry [23][24], progress remains 126 

limited. In particular, the automatic detection of occlusions of pipes (so that a pipe is not recognized as 127 

two different ones) remains an issue that needs to be investigated. Additionally, the automatic 128 

recognition of elbows and T-connections between pipe segments (so that pipes are recognized as a 129 

continuous pipe spools or networks as opposed to a set of disconnected pipe segments) needs further 130 

investigation. Effective detection of occlusions and connecting components would significantly improve 131 

the speed of generating accurate pipe network models. 132 

Before getting into more details with specific techniques, it is worth pointing that the terms “detection”, 133 

“recognition” and “identification” are commonly used, but their use is not always consistent across the 134 

literature. In this manuscript, we use them as follows: 135 

 Detection: an object is present. More specifically here, this means that some specific features 136 

are found in the data (e.g. circular cross-sections). 137 

 Recognition: the type of object can be discerned. More specifically here, this means that the 138 

analysis of the features enables discerning objects of a specific type (e.g. pipes with circular 139 

cross-sections). 140 
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 Identification: a specific object can be discerned. More specifically here, this means that each 141 

recognized object can be matched to a specific object in a known list (e.g. a recognized pipe is 142 

discerned as being a certain pipe present in the project BIM model). 143 

 144 

Surface feature detection, and in particular smooth curved surface detection, are topics of fundamental 145 

importance to 3D point cloud processing and have been widely studied. For detecting specified simple 146 

parametric surfaces, such as planes, cylinders, spheres and tori in point clouds, transform approaches 147 

have been considered, in particular the Hough Transform [55][56][57] that is used here (See Section 2.2 148 

for details). Other types of transforms have been investigated for object shape detection, such as the 149 

Radon transform. For example, van Ginkel  et al. [58] investigated the generalised Radon transform to 150 

detect curves. However, the Radon transform has several drawbacks that make it unsuitable for the 151 

investigated point clouds. Its brute-force approach demands extensive computational resources; and its 152 

restriction to line drawings or sketch-like formats mandate an additional edge detection step. Van 153 

Ginkel  et al. [59] studied the Hough transform, the Radon transform, and the mathematical relationship 154 

between them. 155 

Alternatively, curved surfaces can also be searched for directly in noisy point clouds, without employing 156 

any transform. Such approaches have been widely studied and typically consist in first capturing local 157 

surface curvature at each point using neighboring points, and then segmenting the point cloud using 158 

some region growing and clustering methods [60][61][62][63][64][65][66][67][68]. For example, Besl 159 

and Jain [60] proposed an approach that estimates local curvature using the mean and Gaussian 160 

curvature and then applies a region growing algorithm employing the fitting of quadratic surfaces. 161 

Methods proposed by Hoppe et al. [61] and Shaffer et al. [62] estimate local surface properties by 162 
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analyzing the eigenvalues and eigenvectors of the covariance matrix of point neighbourhood clusters. 163 

Pauly et al. [65] presented a multi-scale technique that works across multiple resolutions of the point 164 

cloud to extract the line features of 3D object surfaces.  Rabbani et al. [66] presented a  curved surface 165 

region growing method based on surface normal and local smoothness constraints.  Klasing et al. [68] 166 

presented a review and experimental comparison of surface normal estimation methods. The challenges 167 

in surface growing (curved or planar) are over-segmentation (which is typically addressed through a 168 

post-processing step) and noise handling.  The latter is a key issue which has been addressed by many 169 

researchers including Carr et al. [69] in a fundamental sense and Xiong et al. [70] as applied to building 170 

construction. Future research is desirable to compare the use of the Hough transform as described in 171 

this paper with curvature based surface growing approaches. However, this is outside the scope of the 172 

research reported here. 173 

In the following two sections, we focus on the Hough transform for the detection of simple parametric 174 

surfaces, in particular cylindrical surfaces. Then, the employed Scan-vs-BIM technique for object 175 

recognition is reviewed. 176 

2.2 Hough Transform 177 

The Hough transform is a technique that can be utilized to detect parametric features within noisy data. 178 

It is usually carried out in three steps. The first step is concerned with creating and quantizing a 179 

parameter space, which is followed by the application of a voting rule in that parameter space [55][56]. 180 

The shape parameters within the accumulated array of votes are extracted during the final step. The 181 

technique was first introduced to detect straight lines using a parametric representation of the line in an 182 

image. In this case, the Hough transform requires two parameters: the slope and intercept [55], or the 183 

length and orientation of the normal vector to the line from the image origin [56]. Modified versions of 184 
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the technique were developed by Duda and Hart [56] for extracting 2D curved shapes and by Cheng and 185 

Liu [57] for extracting ellipses. A comprehensive review of basic and probabilistic Hough based methods 186 

can be found in [71].  187 

In construction engineering, Haas [13] implemented a 2D Hough transform for underground pipe 188 

detection. Vosselman et al. [51] investigated using a 3D Hough transform to extract planar surfaces from 189 

point-clouds. Newman et al. [72] proposed a method that combines the Hough transform and a 190 

regression procedure to recognize 3D shapes such as cylinders, spheres and cones. Rabbani et al. [44] 191 

have investigated a 5D Hough transform approach to extract cylindrical objects from point clouds. While 192 

that work was seminal research, its application was severely limited by the computational complexity 193 

resulting from the dimensionality of the Hough space. In general, high-dimensional Hough spaces are 194 

not practical. Working in Hough-space with more than two dimensions requires simplifications through 195 

judicious use of domain constraints, as described by Rabbani et al. themselves. 196 

To address the memory and computational complexity constraints of the Hough transform, Borrmann et 197 

al. [73] proposed the Hough space accumulator structure, while Pietrowcew [74] presented a Fuzzy 198 

Hough methodology that adjusts the votes in the parameter space to extract special shapes. 199 

Ahmed et al. [48][49] demonstrate the application of judicious use of domain constraints to efficiently 200 

detect circular-cross-sections in orthogonal directions (XYZ) of 3D TLS data, and consequently recognize 201 

objects with cylindrical shapes. In their approach, it is assumed that most cylindrical MEP components 202 

are built in orthogonal directions along the main axes of a facility. Circular cross-sections should then be 203 

identifiable in 3D point cloud data slices taken along those three directions. The recognition of 204 

cylindrical pipes could then be inferred from the set of circular cross-sections detected in slices along 205 

each of the directions. In summary, the technique implements the following steps: 206 
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1) Resample the original point-cloud to a number of thin slices. Slices are defined at a pre-207 

determined interval along the X, Y and Z directions (e.g. 10cm); 208 

2) For each slice, apply the Hough transform to find circles of expected diameters; 209 

3) Connect centers of collinear detected circles (using rules described in Ahmed et al. [48][49]), 210 

then fit straight lines through the circles’ centers,  211 

4) Filter out the systematic errors due to slicing tilt, 212 

5) Reconstruct the 3D pipes using the computed centerlines and their respective radii, 213 

Applications of the Hough transform to laser scanned data have focused on detection of simple 214 

geometric features (e.g. straight lines, circular sections) and subsequent recognition of objects having 215 

those features; but these steps alone do not enable the identification of those objects – which is 216 

necessary for robust progress tracking. For example, the Hough transform can be used to detect all 217 

pipes with a pre-defined radius within a scanned point cloud, but it is just a first step in their 218 

identification, i.e. the mapping between the detected pipes and those defined in the designed 3D BIM 219 

model of the facility. Further steps are required for recognition and identification, including: (1) 220 

registration of sets of detected cylindrical objects and sets of cylindrical objects from the BIM model, (2) 221 

application of reasoning based on cylindrical object characteristics such as diameter, direction and 222 

proximity, (3) application of reasoning based on object connectivity, and (4) recognition and 223 

identification decision making based on these preceding steps. 224 

2.3 Scan-vs-BIM Method 225 

In the case that an as-designed BIM model of the works to be tracked is available, the prior information 226 

contained in the model can be leveraged to not only detect and recognize the objects contained in the 227 

model, but also identify them [31][32][33]. Bosché and Haas [31][32] proposed such an approach and 228 
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refer to it as “Scan-vs-BIM” [53]. In the Scan-vs-BIM approach, 3D laser scanned point clouds are first 229 

aligned in the coordinate system of the 3D model. This can be done using site benchmarks or using 230 

automated or semi-automated registration techniques [75][76]. Once the registration is completed for 231 

all available scans, objects contained in the as-designed BIM model are recognized and identified in the 232 

combined point cloud using the following four-step process:  233 

1 – Matching/Recognized Point Clouds: For each scan, each point is matched with a 3D model 234 

object. Matching is done by projecting the point orthogonally on the surfaces of all NObj objects of the 3D 235 

BIM model. Then, the object with (1) the closest surface to the point, but with distance not larger than a 236 

threshold δmax (we use δmax=50mm), and (2) a surface normal vector not further than αmax (we use 237 

αmax=45°) from that at the as-built TLS point is considered matching object. This process effectively 238 

segments each initial scan into NObj+1 point clouds; one per object that includes all the points matched 239 

to that object and another one containing all the points not matched to any model object. We call the 240 

latter the “NonModel” point cloud. 241 

2 - Occluding Point Clouds (i.e. point clouds acquired from objects that do not seem to 242 

correspond to any object in the BIM model but that are occluding objects that are contained in the BIM 243 

model): For each as-built scan, the NonModel point cloud is further processed to identify the NonModel 244 

points that lay between the scanner and 3D model objects. The result of this process is not just an 245 

overall Occlusion point cloud, but also its segmentation into NObj point clouds; one per object that 246 

includes all the points occluding that object. 247 

3 - As-planned Point Clouds: For each scan, a corresponding virtual as-planned scan is calculated. 248 

This is done using the 3D model and the same scanner’s location and scan resolution as those of the 249 

actual (as-built) scan obtained from the registration process. Each as-planned point is calculated by 250 
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projecting a ray from the scanner onto the 3D model. The result of this process is not just an as-planned 251 

scan, but also its segmentation into NObj point clouds; one per object that includes all the points 252 

matched to that object. Note that we do not retain any NonModel as-planned point cloud. 253 

4 - Object Recognition: The results of the first three steps are finally aggregated. Each model 254 

object then has:  255 

 A matched/recognized surface area, Srecognized (derived from the points contained in the 256 

matching Point Cloud).  257 

 An occlusion surface area, Soccluded. 258 

 An as-planned surface area, Splanned. 259 

These surface areas allow the calculation of two metrics used for inferring the recognition of the 260 

object: 261 
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            estimates the level of recognition by calculating the percentage of surface expected to be 265 

recognized that is actually recognized.            
  is a weighted recognized surface where the 266 

contribution of each point to the recognized surface (i.e. the surface it covers,   ) is weighted based on 267 

the quality of its matching (i.e. the distance    from the as-built point to the matching surface). 268 
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            thus extends             by taking account for the deviation between the as-built and 269 

designed positioned of objects.             can be used as a measure of the level of confidence in the 270 

recognition of each object, or the level to which the object can be considered built as planned. We refer 271 

the reader to [52][53] for details. 272 

It has been shown through experiments with real-life data that the Scan-vs-BIM approach performs 273 

extremely well for structural works tracking. Furthermore, this approach directly enables the 274 

identification of objects. However, the features used by the approach (surface orientation and point 275 

proximity) work only for objects with minor geometrical discrepancy between the as-built and as-276 

planned states. For example, any object built at a location further away than δmax (50mm) cannot be 277 

recognized and identified; in fact, it was shown in [53] that the performance of this approach can drop 278 

significantly in the case of MEP works. 279 

2.4 Contribution 280 

The review of the Hough transform and Scan-vs-BIM techniques highlights a radical complementarity in 281 

terms of performance. While the Hough transform can robustly detect circular cross-sections in the 282 

presence of significant amounts of occlusions, and Mahmoud et al. [48][49] have shown that those 283 

detections can support the recognition of cylindrical objects, their method cannot be used on its own to 284 

infer their identification. Furthermore, the method of Mahmoud et al. can only recognize objects with 285 

cylindrical shape, i.e. circular cross-sections along a straight centerline; it cannot recognize objects with 286 

non-collinear circular cross-sections (e.g. curved pipes, elbows). On the other hand, the Scan-vs-BIM 287 

technique of [31][32][53] enables the recognition and identification of simple and complex objects, but 288 

its recognition metrics are not robust to recognize objects that are significantly displaced from their 289 

designed location. It also cannot recognize objects that are not contained in the BIM model.  290 
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Bosché et al. [53] have suggested that, given an as-designed BIM model, as-built 3D data could be more 291 

effectively processed by integrating Scan-vs-BIM with Scan-to-BIM techniques (such as Hough Transform 292 

– based techniques) (Figure 1). How to do so remains a significant gap in the knowledge base. 293 

 294 

Figure 1: Data processing system for life-cycle BIM model dimensional information management 295 
proposed in Bosché et al. [53]. 296 

This paper presents an approach that uniquely attempts to achieve this. It integrates the Hough 297 

transform–based circular cross-section detection approach of Ahmed et al. [48][49] with the Scan-vs-298 

BIM approach of Bosché et al. [31][32][53] to robustly and automatically recognize and identify all 299 

objects with circular cross-sections in as-built TLS point clouds. It is also able to detect cylindrical objects 300 

that are not contained in the BIM models – such as those that are “field run”, which is an extremely 301 

common practice world-wide. It attempts to benefit from the strengths of both approaches while 302 

simultaneously elevating their respective limitations. The approach is detailed in Section 3 and validated 303 

with an experiment conducted with data acquired on a real-life project (Section 4). The performance is 304 

discussed in Section 5, which is followed with the conclusions and suggestions for future work (Section 305 

6). 306 
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3 Proposed Approach 307 

Our proposed approach integrates the Hough transform-based circular cross-section detection approach 308 

of Ahmed et al [48][49] within the Scan-vs-BIM system of Bosché et al. [31][32][53]. The process 309 

contains five steps (see also Figure 2): 310 

1. Register as-built point cloud with the (as-planned) BIM model. The as-built point cloud data is 311 

registered in the coordinate system of the (as-planned) BIM model. This is the same procedure 312 

as the step 1 of the Scan-vs-BIM approach described in Section 2.3. We refer the reader to 313 

[32][53][54] for details. 314 

2. Generate “virtual” as-planned point cloud. From Step (1), the locations of the scanners (when 315 

acquiring the as-built data) are now known in the coordinate system of the BIM model. It is thus 316 

possible to generate a “virtual” as-planned point cloud where the BIM model acts as the 317 

scanned scene. This is the same procedure as the step 3 of the Scan-vs-BIM approach described 318 

in Section 2.3. We refer the reader to [32][53] for details. 319 

3. Extract circular cross-sections from the as-built and as-planned point clouds; see Section 3.1. 320 

4. Match the cross-sections extracted from the as-built point cloud to the cross-sections 321 

extracted from the as-planned point cloud; see Section 3.2.  322 

5. For each (as-planned) object contained in the BIM model and with circular cross-section (e.g. 323 

pipe), infer its recognition/identification, and to which extent it can be considered “built as 324 

planned”; see Section 3.3. 325 

Steps 3 to 5 are detailed in sub-sections 3.1 to 3.3 respectively. 326 
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 327 

Figure 2: Summary of the proposed novel approach to automatically recognize and identify in TLS data 328 
objects with circular cross-sections (e.g. pipes) contained in a project’s as-designed BIM model. 329 

3.1 Circular Cross-Section Detection 330 

The application of the Step 1 and 2 of the proposed method produces an as-planned 3D point cloud, 331 

with the same characteristics as the as-built point cloud (field of view and point density), and in the 332 

same coordinate system as the as-built point cloud.   333 

The Hough transform -based circular cross-section detection method of Ahmed et al. [48][49] is then 334 

applied to both point clouds. Very importantly, this is done using this exact same slicing of the data (in 335 

three orthogonal directions and at constant intervals along those directions) for both point clouds.  336 
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The result of this process is a set of circular cross-sections detected within the as-built point cloud, and 337 

another set of circular cross-sections detected within the as-planned point cloud. Furthermore, each 338 

data slice is associated with a set of as-built and as-planned cross-sections. 339 

3.2 Circular Cross-Section Matching 340 

Once circular cross-sections have been extracted from both the as-built and as-planned point clouds, the 341 

goal is to find, for each as-built cross-section, its best matching as-planned cross-section, if any. For this, 342 

we use a cross-section similarity criterion that integrates three sub-criteria with respect to: 343 

 Location: the similarity sub-criterion,   , is calculated based on the distance between the 344 

centers of the as-built and as-planned cross-sections relative to a maximum distance     : 345 

     
‖       ‖

    
, 346 

where      is the coordinate vector of the center of the as-built cross-section,      is the 347 

coordinate vector of the center of the as-planned cross-section. We set        , but 348 

one could also consider setting      as a multiple of the as-planned radius of the object’s 349 

cross-section.      when the centers are exactly the same;      when the distance 350 

between the centers is     . Furthermore, we discard any match between cross-sections 351 

that are further away than     , i.e. for which     . 352 

 Radius: the similarity sub-criterion,   , is calculated based on the difference between the radii 353 

of the as-built and as-planned circular cross-sections relative to a maximum value     : 354 

     
|       |

    
 , 355 
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where     is the radius of the extracted as-built cross-section,     is the designed radius of 356 

the as-planned cross-section, and          . We set       .      when the radii are 357 

exactly the same;      when they differ by     . Furthermore, we discard any match 358 

between cross-sections with differences in radii larger than     , i.e. for which     . 359 

 Orientation: the similarity sub-criterion,   , is calculated as the absolute value of the cosinus of 360 

the angle between the normal vectors to the as-built and as-planned cross-sections.  361 

   |   (       )| , 362 

where      and      are the normal vectors of the extracted as-built and as-planned cross-363 

sections, respectively.      when the normal vectors are collinear;      when they are 364 

orthogonal. 365 

The resulting cross-section similarity criterion, integrating the three sub-criteria above, is then 366 

calculated as: 367 

                  , 368 

where   ,   ,    and are three weights adding up to 1.     when the cross-sections 369 

have the same center, radius and orientation. 370 

With a view on speeding up the matching process, as well as ensuring meaningful and consistent 371 

matches, we search for matches only within each data slice. In other words, for each as-built cross-372 

section, we search for matching as-planned cross-sections only within the same TLS data slice. This 373 

implies that all considered matches are between cross-sections having the same orientation; or, for all 374 

considered matches     . The orientation criterion can thus be discarded from the overall matching 375 

criterion, which becomes: 376 
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            , 377 

where    and    are two weights adding up to 1.  378 

Because    and    are both designed to take values in the range [   ] and our discarding strategy leads 379 

to a situation where there is no obvious reason to advantage one of the criteria over the other, we 380 

propose to set the weights as:          . 381 

3.3 Object Recognition/Identification 382 

For each (as-planned) object with circular cross-section contained in the BIM model, we analyze the 383 

cross-section matching results to: (1) infer whether it can be considered recognized/identified; and (2) 384 

to which extent it can be considered “built as planned”. We propose to calculate the corresponding two 385 

metrics:         , that can be used to infer recognition and identification, and  ̅, that estimates the 386 

extent to which each object is geometrically “built as planned”, as: 387 

         
        

        
 

 ̅  
∑ (  )

        
   

        
 

where          is the number of as-planned cross-sections for the given object;           388 

is the number of those cross-sections that have been matched to as-built cross-sections; 389 

and    is the similarity measure for the ith match. 390 
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           when all as-planned cross-sections have been matched, which implies that the object is 391 

most likely recognized and identified. In contrast,            when none of the cross-sections are 392 

matched, implying that the object is most likely not recognized. 393 

 ̅    when all the matches between as-planned and as-built cross-sections are exact; i.e. the 394 

recognized/identified part of the object (whether complete or incomplete) is “built as planned”. In 395 

contrast,  ̅    implies that the recognized/identified part of the object is not built exactly as planned. 396 

Figure 3 qualitatively summarizes how these two metrics can be collectively analyzed to interpret the 397 

results. 398 

 399 

Figure 3: Possible interpretation of the combined values of          and  ̅. 400 

It is also possible to integrate the two metrics above into a single one,  ̅ : 401 

 ̅  
∑ (  )
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 ̅  can be interpreted as a measure of the level to which each entire object is “built as planned” (not just 402 

the detected parts, i.e. cross-sections).  ̅    when all the planned cross-sections are matched to as-403 

built cross-sections and these matches are exact; i.e. the object is “built as planned”. In contrast,  ̅    404 

implies that the object is not complete, not built as planned, or a combination of those two cases. For 405 

example,  ̅      could result from half the as-planned cross-sections being perfectly matched but the 406 

other half being not matched at all (which could mean that only a section of the object is fully installed); 407 

alternatively, it could result from all the as-planned cross-sections being matched, but the matching 408 

similarities are on average only 0.5, which means that the object is built, but not as planned. 409 

It is interesting to note that the individual object  ̅  values can be aggregated to derive measures of the 410 

level to which overall systems or areas are “built as planned”. The following formula, implementing a 411 

weighted average of the objects’  ̅  values, can be used: 412 

  ̅     
  

∑ (            ̅
 )

        

   

        

 
∑ (∑ (    )

          

   
)

        

   

        

 

where          is the number of objects in the considered system (or area), and   ̅
  is the 413 

estimation of the extent to which the jth object can be considered “built as planned”. 414 

It is important to note that, in contrast with the original Scan-vs-BIM technique that takes occlusions 415 

from other objects into account in the object recognition and identification metric (see definitions of 416 

            and             in Section 2.3), the effect of occlusions is not considered in the metric 417 

        . This could be considered in future work. We point out however that  ̅ and  ̅  directly work 418 

with the matched cross-sections and therefore are not impacted by occlusions. 419 



23 

 

3.4 As-built Modelling 420 

Once the as-planned pipes have been recognized, it is possible to conduct their as-built modelling by 421 

generating pipes along the cross-sections matched to each as-planned pipe. In this paper, we simply 422 

propose to split the cross-sections into groups of collinear cross-sections (across several layers), and 423 

then apply the method proposed by Ahmed et al. [48][49]. This method generates the best fitting 424 

centerline (filtering out any false cross-sections) from the group of cross-sections, and then uses this 425 

centerline along with the cross-sections radius to generate cylinders representing the straight pipe. 426 

4 Experiments 427 

4.1 Data 428 

We conducted an experiment with data collected during the construction of the Engineering VI Building 429 

at the University of Waterloo that is designed to shelter the Chemical Engineering Department of the 430 

university (a five-storey, 100,000-square-foot building). The data collected include 2D drawings and a set 431 

of field laser scans. The authors created a 3D CAD/BIM model of the 5th floor based on the information 432 

provided on 2D drawings.  433 

This project was chosen for the study as the building includes numerous pipes and ducts, to provide 434 

water and gas to different laboratories and to collect and evacuate chemical fumes from them. This 435 

study focused specifically on the service corridor of the fifth floor (31m x 3.4m) as it contains all the 436 

pipes coming from the lower levels and going all the way up to the penthouse. Figure 4 shows the 437 

service corridor section of the 3D CAD/BIM model. 438 
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Laser scans were acquired from the corridor using the FARO LS 880 HE laser scanner, which employs 439 

phase-based technology (see Table 1 for the technical characteristics of the scanner). Six scans were 440 

acquired along the corridor because of the density of the pipes and ducts and the narrowness of the 441 

corridor (Figure 5). 442 

 443 

Figure 4: 3D model of the 5th floor corridor of Engineering VI. 444 

Table 1: Characteristics of the FARO LS 880 HE scanner 445 

Laser Type 785nm; near infrared 
Distance Range 

Accuracy 
0.6 m to 76 m. 
±3 mm @ 25 m. 

Angle Range 
Accuracy 

Hor: 360°; Vert: 320° 
Hor: 16 μrad; Vert:  16 μrad 

Maximum Resolution Hor: 13 μrad; Vert: 157 μrad 
Acquisition Speed up to 120,000 pts/s 

 446 

 447 

Figure 5: Combined six laser scans of the 5th floor corridor Engineering VI; the dots show the scanning 448 
locations. 449 

 450 
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Figure 6: Top view of the corridor highlighting the pipes visually identified as present (at least 451 
partially) in the corridor at the time of scanning. The pipes present are shown in yellow, those absent 452 

are in blue. In brown are ducts that were also present. 453 

4.2 Results 454 

4.2.1 Cross-section Detection 455 

After aligning the point cloud of the six scans in the coordinate system of the project 3D CAD/BIM 456 

model, the as-planned point cloud is automatically calculated and the circular cross-sections 457 

automatically extracted from the as-planned and as-built point clouds. Because the pipes contained in 458 

the corridor are essentially all vertical, we focus on those only, and apply the Hough transform -based 459 

method of Ahmed et al. [49] solely with slices along the vertical (Z) axis. Twenty six slices are 460 

automatically generated with 10 cm intervals. From this, the system automatically detects 1176 as-461 

planned circular cross-sections and 164 as-built circular cross-sections (see Figure 7). 462 

 (a) 463 

 (b) 464 

 (c) 465 
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 (d) 466 

Figure 7: Extracted cross-sections detected in the as-built (a) and as-planned (b) point clouds. (c) and 467 
(d) show the as-built (orange) and as-planned (blue) cross-sections altogether. 468 

After applying the circular cross-section matching approach described in Section 3.1, 112 of the 164 as-469 

built cross-sections are matched to as-planned cross-sections, and all with similarity levels > 0.95. 470 

Looking at the 52 as-built cross-sections that are not matched, these come from two sets of 26 cross-471 

sections: 472 

 The first 26 cross-sections were detected at the same location as another set of 26 as-built 473 

cross-sections but for a different radius (see Figure 8(a)). The system matched the latter set to 474 

the locally corresponding as-planned cross-sections because they had the exact same radius; 475 

the other set was thus correctly rejected.  476 

 The second set of 26 cross-sections comes from a very small pipe present in the corridor at the 477 

time of scanning but that did not correspond to any pipe in the 3D model (see Figure 8(b)). 478 

These cross-sections were thus correctly rejected by the system. Note that, using the same 479 

dataset, the original Scan-vs-BIM approach of Bosché et al. had wrongly suggested that this 480 

pipe was present in the scene (albeit with some low level of confidence) [53]. 481 

In conclusion, the 52 cross-sections that are not matched to any as-planned cross-section, are actually 482 

correctly not matched by the system. Note, however, that the non-matched detected cross-sections 483 
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could still be used to inform and partially automate a manual update of the BIM model. For example, 484 

the pipe with small diameter found by the system could be added directly to the BIM model. 485 

 (a)  (b) 486 

Figure 8: The two cases where as-built cross-sections are (correctly) not matched to any as-planned 487 
one. (a) two sets of cross-sections are extracted at the same location; the system rejects the set with 488 
the largest radius because it is too dissimilar to the locally corresponding as-planned cross-sections; 489 

(b) small temporary pipe clearly not corresponding to the local as-planned pipe. 490 

4.2.2 Pipe Recognition and Identification 491 

After aggregating the results for each pipe actually present in the corridor (i.e. the yellow pipes in Figure 492 

6), the pipe recognition/identification metrics described in Section 3.3, namely         ,  ̅ and  ̅ , are 493 

calculated and summarized in Table 2 and Figure 9. The results highlight a few points: 494 

 For two of the pipes that can be visually recognized in the data, the system fails to detect any 495 

circular cross-section. This is due to the fact that too few points were actually scanned from 496 

those pipes to enable the confident detection of cross-sections. 497 

 In this particular experimental dataset, all the matched as-built cross-sections are very close to 498 

their matching as-planned ones ( ̅      ), which indicates that pipes, or at least partial 499 

sections of pipes, are recognized at their expected locations. 500 

 For six pipes, fewer than half the as-planned cross-sections are recognized. As summarized 501 

earlier in Figure 3, this and the corresponding high  ̅ values for those objects indicate that they 502 
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are likely identified at their as-built locations, but are incomplete (which is confirmed by a visual 503 

analysis of the data; see also Figure 11). 504 

 For three pipes (09, 20 and 26), all as-planned cross-sections are recognized, and are found very 505 

close to their designed locations and with the same radius. These pipes would thus be correctly 506 

considered fully identified. 507 

Table 2: Recognition results (        ,  ̅,  ̅ ) for each of the pipes actually present (at least partially) 508 
in the as-built point cloud. 509 

Pipe Name                             ̅  ̅  

Pipe_01 26 11 0.42 0.99 0.42 

Pipe_02 26 4 0.15 0.95 0.15 

Pipe_03 26 9 0.35 0.97 0.34 

Pipe_09 26 26 1.00 0.97 0.99 

Pipe_12 26 0 0.00 0.00 0.00 

Pipe_18 0 0 0.00 0.00 0.00 

Pipe_20 26 26 1.00 0.97 0.98 

Pipe_26 16 16 1.00 0.96 0.98 

Pipe_32 16 4 0.25 0.96 0.25 

Pipe_35 26 7 0.27 0.97 0.27 

Pipe_44 26 1 0.04 0.99 0.04 

Pipe_51 26 8 0.31 0.98 0.30 

 510 
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 511 

Figure 9: The recognition values          and  ̅ for all the pipes present in the corridor. Figure 3 512 
indicates how the results can be interpreted. 513 

The results above indicate some level of robustness of our proposed approach, but it remains to be 514 

assessed how it compares against the original Scan-vs-BIM approach of Bosché et al.[53]. To conduct 515 

this comparison, we apply the original Scan-vs-BIM approach of Bosché et al. [53] to this dataset, and 516 

compare  ̅  and             (the metric used in [53]) that both provide an estimation of the level of 517 

confidence in the matching of the as-planned objects to the as-built data. Table 3 and Figure 10 518 

summarize the values obtained and their comparison. The results tend to demonstrate that the new 519 

approach is more robust, as illustrated with the following four examples (see Figure 11): 520 

 Pipe_20: As can be seen in Figure 11(a), as-built points are found in large areas along the entire 521 

length of the pipe and these are at the same locations as the as-planned ones. For this reason, 522 

the two approaches both estimate high levels of confidence in the recognition/identification of 523 

the pipe ( ̅       and                 ). 524 

 Pipe_09: As can be seen in Figure 11(b), as-built points are found in large parts along the entire 525 

length of the pipe. However, it appears that the pipe is not located exactly where it is planned to 526 
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be. Despite the fact that the out-of-place deviation is minor (~5cm), the original Scan-vs-BIM 527 

approach achieves a fairly low level of confidence in the recognition of the pipe (            528 

    ). In contrast, the new approach correctly maintains a high level of confidence in the 529 

recognition ( ̅      ); it also provides information that can be readily used to automatically 530 

correct the as-built location of the pipe in the BIM model. 531 

 Pipe_32: As can be seen in Figure 11(c), as-built points are found at the right location 532 

horizontally, but only the bottom section of the pipe is actually installed. But, because more 533 

points are recognized at the bottom of the pipe than planned, the original Scan-vs-BIM ends up 534 

reaching a level of confidence in the recognition of the entire pipe that is clearly over-estimated 535 

(                ). In contrast, the new approach estimates a more appropriate level of 536 

confidence ( ̅      ). 537 

 Pipe_02: As can be seen in Figure 11(e), as-built points are found at a horizontal location that is 538 

slightly different from the planned one, and only the bottom part of the pipe has actually been 539 

installed. The combined effect of the out-of-plane deviation (which is just ~6cm) leads the 540 

original Scan-vs-BIM approach to give a quasi-null level of confidence (                ) – 541 

and actually reaches the conclusion that the pipe is not recognized. In contrast, the new 542 

approach once again estimates a higher, and generally more representative, level of confidence 543 

( ̅      ). 544 

 545 

Table 3: Comparison of the performance of the proposed approach ( ̅ ) against the original Scan-vs-546 
BIM approach of Bosché et al. [53] (           ) for recognizing each of the pipes actually present (at 547 

least partially) in the as-built point cloud. 548 

Pipe Name  ̅              

Pipe_01 0.42 0.44 
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Pipe_02 0.15 0.02 

Pipe_03 0.34 0.01 

Pipe_09 0.99 0.49 

Pipe_12 0.00 0.00 

Pipe_18 0.00 0.55 

Pipe_20 0.98 0.81 

Pipe_26 0.98 0.46 

Pipe_32 0.25 0.73 

Pipe_35 0.27 0.32 

Pipe_44 0.04 0.01 

Pipe_51 0.30 0.33 

 549 

  550 

Figure 10: Graphical representation of the results summarized in Table 3. 551 
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 (a) 552 

 (b) 553 

 (c) 554 

 (d) 555 

Figure 11: The as-built and as-planned point-clouds for objects Pipe_20 (a), Pipe_09 (b), Pipe_32 556 
(c), and Pipe_02 (d). From the left, the first column shows top views of the as-built point clouds, 557 

the second columns top views of the as-planned point clouds, the third column top views of both 558 
point clouds, and the last column side views of both point clouds.  559 

Given all the  ̅  values for all the pipes in the corridor, we can also calculate the overall level with which 560 

the corridor’s piping is currently built as-planned (including whether objects are built or not), using the 561 

formula described in Section 3.3. We obtain:   ̅              
 =9%. This value is low essentially because 562 
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many of the pipes are currently not installed. But, arguably, it provides a meaningful estimation of the 563 

level to which piping works in the corridor have progressed to date. 564 

4.2.3 As-built Modelling 565 

Once the cross-sections have been matched, the system not only calculates the  ̅  value to infer the 566 

recognition/identification of each BIM model object (and infer whether it is built as planned), but it also 567 

generates the as-built model of each pipe. The result of this process with our experimental data is 568 

shown in Figure 12. In this figure, the pipes are labelled so that they can be related to the results 569 

reported in Table 2 and Table 3. 570 

 571 

Figure 12: The as-built 3D models of the recognized/identified pipes, in comparison with the 572 
centerlines of the as-planned pipes. 573 

5 Discussion 574 

The experiment reported above, albeit arguably of a limited nature, does demonstrate the added value 575 

of the proposed new approach to detect, recognize and identify cylindrical MEP components, in 576 

comparison with the original Scan-vs-BIM approach of Bosché et al. [53]. The two main areas of 577 

improved performance are: 578 
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1. Out-of-plane deviations (or, out-of-centerline deviations): The original approach can only 579 

recognize objects within 5cm or so from their as-planned locations. In contrast, the new 580 

approach is far less sensitive to such deviations, and maintains high levels of confidence up to 581 

and actually far beyond such distances. 582 

2. Pipe completeness recognition: The original approach is not able to distinguish whether the 583 

recognized points are acquired at different locations along the pipes, and may consequently 584 

over-estimate its level of confidence. In contrast, the new approach, by matching cross-sections 585 

at regular intervals along the pipes, is able to take this factor into account when estimating its 586 

level of confidence. 587 

Additionally, the proposed approach is capable of identifying objects (i.e. identify to which object each 588 

cross-section corresponds to). Therefore, it addresses the issue of “pipe occlusions” – i.e. ensuring that 589 

an occluded pipe is not recognized as two different ones. 590 

Naturally, this performance needs to be confirmed with additional, more complex scenarios, in 591 

particular with pipes going in different directions (not just vertically). Yet, some limitations can already 592 

be pointed at that would require further investigation, in particular: 593 

 The Hough transform -based approach for detecting circular cross-sections analyzes the data in 594 

pre-determined directions, in particular the main three orthogonal directions. While pipes and 595 

other cylindrical MEP objects tend to be run in these main, these three main directions could be 596 

complemented with at least 6 other ones to search for cross-sections oriented 45° from the 597 

main directions (this would also help in recognizing elbows). However, increasing the number of 598 

slicing directions proportionally increases the processing time. An alternative more general 599 



35 

 

approach to extract cylindrical pipes, such as the one proposed by Son et al. [50], could be 600 

investigated. 601 

 While the proposed new method to recognize and identify objects with circular cross-sections is 602 

more robust than the original approach employed by Bosché et al. [53], false positive and false 603 

negative recognitions could still occur. For example, the current approach cannot recognize a 604 

pipe that is further away than      from its planned location (false negative). Or, if a pipe is 605 

mis-located but happens to have an as-built location and radius that are the same as those  of 606 

another pipe, then the system will wrongly recognize the pipe (false positive). Preventing such 607 

errors would require further prior information to be considered in the recognition and 608 

identification process, such as component connectivity. 609 

6 Conclusions 610 

This paper presented a novel approach to automatically recognize and identify objects with circular 611 

cross-sections (e.g. pipes) in 3D TLS data acquired from construction sites, and given the project’s 3D 612 

design BIM model. This approach uniquely integrates an object detection and recognition technique 613 

(typically employed in Scan-to-BIM applications) with a Scan-vs-BIM approach inferring object 614 

recognition and identification from proximity analysis. Specifically, the approach integrates the efficient 615 

Hough transform -based circular cross-section detection approach of Ahmed et al. [48][49] within the 616 

Scan-vs-BIM object recognition and identification framework of Bosché et al. [31][32][53]. Objects are 617 

recognized based on the matching of as-built and as-planned cross-sections in terms of proximity, 618 

orientation and radius. The proposed object recognition metrics can be used not only to infer 619 

recognition, but also to estimate the extent to which each object is “built as planned”. These individual 620 
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estimations can also be aggregated to assess the extent to which a system, area or other grouping is 621 

built as planned, i.e. its “percentage built as planned”. 622 

An experiment has been conducted using scans acquired from a utility corridor under construction. The 623 

results are very encouraging and already demonstrate the added value of the proposed integrated 624 

approach over the rather simpler Scan-vs-BIM approach of Bosché et al. [53]. While these results need 625 

to be confirmed with more complex scenarios, two main limitations are already identified that will 626 

require further investigations, namely: the search for pipes by the proposed Hough transform approach 627 

in pre-defined directions only; and the fact that false positive and false negatives may still occur 628 

(although the proposed approach already significantly reduces their chance of occurrence). Alternative 629 

approaches to the circular cross-section detection method employed here could be investigated that are 630 

more general and able to detect circular cross-sections, or more generally cylindrical pipes, in any 631 

direction. The metric used to recognize and identify the as-planned objects also presents some 632 

limitations that can only be addressed by applying higher-level reasoning, for example by analyzing 633 

object connectivity. 634 
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