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Abstract: 

Mechanical, Electrical and Plumbing (MEP) works constitute a large portion of construction costs and 

thus need to be appropriately tracked. Assessment of the built status of MEP works in construction 

projects is however typically limited to subcontractor claims augmented and contrasted with periodic 

manual inspection. More detailed manual inspection is costly and not considered worthwhile on most 

projects. Within a Scan-vs-BIM object recognition framework, three dimensional laser scanning and 

project 3D/4D BIM models jointly offer the opportunity for frequent, detailed and semantically rich 

assessment of as built status of construction projects at a cost that continues to decline. This potential 

has already been demonstrated for tracking structural works, but remains to be assessed in regard to 

other work sections, in particular MEP works. This paper explores that opportunity. A Scan-vs-BIM 

processing system is described with some enhancements over previous works. It is then tested with a 

representative and challenging case study of the construction of a utility corridor in a university 

engineering building. The results indicate that the proposed system is significantly challenged when 

tracking MEP systems constructed using traditional on-site fabrication, due to changes or adjustments 

made on-site that lead to actual component layouts varying in comparison to designed layouts.  This 

performance could be revisited in cases where off-site pre-fabrication and pre-assembly is 

implemented. The results nonetheless lead the authors to propose a novel data processing system 

(conceptually described in this paper) integrating Scan-vs-BIM and Scan-to-BIM approaches. This system 

should provide superior performance over existing systems, enabling automated and robust quality 

control (including the estimation of the emerging performance metric “percent built as designed”) and 

delivery of true as-built BIM models to facility owners and managers. 

Keywords: MEP works, Scan-vs-BIM, 3D, laser scanning, BIM, as-built status, percent built as designed, 

Scan-to-BIM 
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1 Introduction 

1.1 Tracking Progress in the AEC/FM Industry 

Progress tracking is traditionally only mentioned with words such as “visual inspections” and 

“reports”. Inspectors are selected and trained to ensure that work meets contract schedule and 

specifications. Checklists are developed and distributed to inspectors so that they do not overlook 

critical items. A log is at their disposal to report any deficiency that is then discussed during the weekly 

meeting [1]. Monitoring progress (including quality) is an extensive manual operation that requires 

intense labor relying on personal judgment with a high probability of incomplete and inaccurate reports. 

In the early 2000’s, the Architectural Engineering Construction / Facility Management (AEC/FM) industry 

recognized the urgent need for quick and accurate project progress assessment; the way of monitoring 

progress had to be reinvented and automated. 

In recent years, many researchers came to realize the potential of several new technologies 

designed in the mid 1990’s for automated monitoring. Among those technologies are: Radio Frequency 

Identification (RFID), Global Positioning System (GPS), Ultra-Wide Band (UWB), Photogrammetry, and 

Three-dimensional Laser Scanning. For example, Grau et al. [2] examined the productivity impact of 

automating the identification and localization of engineered components on industrial sites. They 

quantified and assessed the impact of the automated tracking methodology, a unique combination of 

RFID, GPS and localization algorithms by considering the traditional tracking process as the baseline for 

comparison. They concluded that materials tracking technologies can significantly improve craft labor 

productivity. Ergen et al. [3][4] utilized RFID technology in order to improve facility management 

processes by locating and tracking facility components automatically. Razavi and Haas [5] deployed a 

unique combination of GPS, RFID and hand held computing technologies to track key construction 

materials. The impact on project control and productivity has proven to be substantial. RFID-based 

indoor location sensing solutions are also investigated by several researchers [6][7][8].  Feasibility of 

employing UWB technology as a data collection for automated workforce, equipment and material 

positioning and tracking is investigated by Teizer et al. [9]. Cheng et al. [10] evaluated performance of 

UWB technology for construction resource location tracking in harsh environments. Shahi et al. [11] 

presented the performance analysis of an UWB positioning system as a material and activity tracking 

tool for indoor construction projects. Using statistical analysis, they produced confidence intervals for 

UWB system error in various tested configurations. Saidi et al. [12] evaluated the static and dynamic 



3 
 

performance of a commercially-available ultra-wideband (UWB) tracking system under realistic 

construction environments for locating and monitoring resources (e.g., people, equipment, and 

materials). The results and experiences they reported are particularly useful for researchers or 

practitioners in need of adapting UWB technology for their application. 

Golparvar-Fard et al. [13][14] proposed an image-based method for progress monitoring using daily 

photographs taken from a construction site. In this research, they calibrate (using internal and external 

calibrations) series of images of the site, and subsequently reconstruct a sparse three-dimensional (3D) 

as-built point cloud of that site. This allows them to automatically compare as-built data with 3D 

designed data, and monitor progress. As detailed below, similar approaches have also been proposed 

using three-dimensional laser scanning, demonstrating significant potential for automated as-built 3D 

modeling and project monitoring [33][34][38]. 

The research works above based on RFID, UWB and GPS technology aim at tracking different 

resources – in particular engineering MEP components – in the supply chain. In comparison, works of 

Golparvar-Fard et al. [13][14] with photogrammetry or Bosché et al. with laser scanning [33][34] focus 

on the installation stage and can be used for assessing the quality of that installation. These latter 

approaches hold much promise for automated progress tracking, but have reported results on structural 

works tracking only. The work presented here investigates whether the laser-scanning –based approach 

of Bosché et al. [33][34] performs as well with MEP works as it does for structural works. 

1.2 Three Dimensional Laser Scanning 

Three dimensional laser scanning, also called LADAR (Laser Detection and Ranging), is an imaging 

technology that has been increasingly used since the 1990’s. It provides fast, accurate, comprehensive 

and detailed 3D data about scanned scenes. 3D laser scanners essentially give a dense 3D point cloud of 

the visible scene with millimeter to centimeter accuracy. The density is such that a single full spherical 

scan can contain millions of points, i.e. with angular resolutions better than 0.01 degrees. The acquired 

3D point clouds can be considered as an end product or be used for further purposes such as the 

creation of as-built 3D (CAD) models for application in design or renovation projects, progress tracking 

and quality control, for instance.  

Laser scanning has been considered by many as the best available technology to capture 3D 

information on a project with accuracy and speed, with a wide range of applications in the AEC/FM 
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industry [15][16][17][18]. For example, laser scanning has been shown to be valuable to construction 

managers for progress monitoring, quality control and facility/infrastructure management [19][20][21]. 

It offers additional value to managers by enabling remote exploration of construction sites and 

supporting contractor coordination [14]. With respect to quality control in particular, Huber et al. [17] 

investigated the applicability of laser scanning for analyzing surface flatness, floor plan modeling and 

recognition of building components. Lijing and Zhengpeng [22] show that the technology offers an 

advantage over traditional methods of surveying which overlook minor local deformations. 

Measurement of deterioration for infrastructure is also being investigated for tunnels [20][21], bridges 

[23][24], and freeways [25]. All these examples illustrate the large range of applications of laser scanning 

technology today, and explain why the market for laser scanning hardware and software has grown 

exponentially in the last decade [26]. Much of this growth is now focusing on the interface between 

scanned data and Building Information Modeling (BIM). 

1.3 Laser Scanning and BIM 

One of the main applications of laser scanning today is the reconstruction of as-built 3D BIM models 

from acquired 3D point clouds; a process commonly called Scan-to-BIM. There is a significant amount of 

effort currently being put (both by academia and by private software companies) into developing 

efficient Scan-to-BIM solutions that are as robust and automated as possible. A review of techniques for 

automated reconstruction of as-built 3D (BIM) models from laser-scanned point clouds up to 2009 can 

be found in [27]. That review further refers to the review of free-form object representation and 

recognition techniques by Campbell and Flynn [28], as well as the more recent review of 3D shape 

recognition techniques by Shilane et al. [29]. Since 2009 (i.e. the review in [27]), further developments 

have been made with new approaches for automated pipeline extraction from point clouds [30], as well 

as automated reconstruction of building indoors (floors, ceilings, walls and windows) [31][32][43]. The 

ClearEdge software suite probably constitutes the state-of-the-art in commercial solution for automated 

extraction of pipes, in particular.  

The rapid development of 3D modeling and BIM offers further perspectives beyond Scan-to-BIM 

applications. In particular, by aligning laser scans of construction sites with design 3D BIM models and 

comparing both on the basis of proximity metrics, 3D model objects can be automatically recognized, 

and very importantly uniquely identified. The authors refer to this process as Scan-vs-BIM (as an analogy 

to Scan-to-BIM). A few research teams have already demonstrated the potential value of Scan-vs-BIM 
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processes for tracking progress and dimension quality control of structural works [35][36][37][38]. 

Similar approaches are also investigated using 3D point clouds generated through photogrammetry 

instead of laser scanning [13][14]. 

There is a clear distinction between object recognition approaches typically employed to solve Scan-

to-BIM –type problems and Scan-vs-BIM ones. The former can lead to an object being recognized 

multiple times in a given scene (e.g. pipes with identical dimensions and appearance are recognized as 

being different occurrences of the same object); while the latter further enable their identification 

because each recognized object refers to a single object within the 3D BIM model. This clear 

identification constitutes an important strength of Scan-vs-BIM processes – although, as will be shown in 

this paper, they also present specific limitations. 

1.4 Contribution 

As discussed above, several research teams have already demonstrated the potential of Scan-vs-

BIM frameworks for progress tracking. However, these works have so far focused solely on structural 

components such as floors, ceilings, walls, beams and columns. The research presented here focuses on 

other important building components, namely mechanical elements such as ducts and pipes. 

Mechanical, Electrical and Plumbing (MEP) systems constitute a large portion of construction costs and 

asset value, and thus also need to be appropriately tracked and managed. Knowledge of their as-built 

status is critical for control and earned value measurement. However, tracking MEP components 

presents specific and critical challenges compared to structural works. First, MEP components may come 

in packed configurations that increase the risk of occlusions and more generally of recognition and 

identification errors (i.e. confusions). Then, their installation in practice, in particular pipes and ducts, 

seems much more flexible with respect to the positioning of individual components and routes (in 

comparison with structural components). As a result, the main aim of the research presented here was 

to assess through a challenging case study the effectiveness of a Scan-vs-BIM system to control MEP 

works. The results show that, although the proposed Scan-vs-BIM approach demonstrates some 

advantages and robustness, its performance remains significantly challenged by the variability in MEP 

component installation. We thus make an additional contribution with the presentation (conceptual) of 

a novel data processing system that leverages the strengths of Scan-to-BIM and Scan-vs-BIM techniques 

within a unified framework that has the potential to address their respective limitations. The application 

of this system is not confined to MEP, but includes essentially any type of works. 
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2 Three dimensional (3D) Object Recognition Approach 

In this section, we summarize the Scan-vs-BIM object recognition system (with recent 

improvements) employed in this research and how it is used to recognize progress of mechanical pipe 

and ductwork installation works. The approach is based on the comparison of the as-built state captured 

in the form of three dimensional (3D) point clouds with the expected state defined by the project 3D 

BIM model [33][34]. Using a 4D BIM model, i.e. by linking an installation schedule to the 3D model, the 

system can be enhanced to track the actual rate of installation and compare it to the expected one 

[35][36]. 

The first (and critical) step of the approach consists in aligning the 3D point clouds in the same 

coordinate system as the 3D model. This process, commonly called registration, should be performed 

using project survey points. If the building structure has already been controlled dimensionally, then 

structural elements may be used as alternative survey landmarks, using methods like the one proposed 

in [40]. Once registration is completed for all available scans, as-built objects can be recognized in the 

combined point clouds. The recognition algorithm has four steps: 

1. Matching/Recognized Point Clouds: for each scan, each point is matched to a 3D model object (or 

none). This leads to an as-built point cloud associated to each 3D model object. 

2. Occluding Point Clouds: for each scan, the points not matched to any model object but that were 

acquired from objects lying between the scanner and 3D model objects are identified as 

occluders. 

3. As-planned Point Clouds: for each scan, a corresponding (virtual) as-planned scan is calculated 

using the same scanning parameters. This leads to an as-planned point cloud associated to each 

3D model object. 

4. Object Recognition: for each object, the associated as-planned, as-built and occluding point 

clouds from all scans are aggregated and jointly analyzed to infer the recognition of the object. 

Sections 2.1 to 2.4 review each of these steps, with more details also available in [33][34]. A 

theoretical assessment of the performance of the proposed method is then made in Section 2.5, prior to 

the experimental assessment reported in Section 3. 
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2.1 Recognized Point Clouds 

Each point of each registered scan is projected orthogonally on the surfaces of all NObj objects 

composing the project 3D model, so that the closest surface matching the point is identified. The 

following criteria are used: if (1) the distance to that surface, δi, is lower than a threshold δmax, and (2) 

the difference between the normal vectors of the nearby surface and of the point,  , is lower than a 

threshold αmax, then the point is considered recognized or matched to the corresponding object. We 

typically use δmax=30mm and αmax=45°. 

The result of this process is a segmentation of each initial scan into (NObj + 1) point clouds; one per 

object (that includes all the points matched to that object) as well as a one containing all the points not 

matched to any model object. We call the latter the “NonModel” point cloud. It typically contains points 

acquired from temporary structures, construction equipment, tools and materials, people, etc. But, as 

will be discussed later, it may also contain data from project elements whose as-built position and shape 

differs significantly from their designed ones. 

2.2 Occluding Point Clouds 

For each as-built scan, the NonModel point cloud is further processed to identify the NonModel 

points that lay between the scanner and 3D (BIM) model objects. These points are considered to be 

occluding points. The result of this process is not only an overall occlusion point cloud, but also its 

segmentation into NObj point clouds; one per 3D model object. Identifying and characterizing occluding 

point clouds is critical to robust object recognition, as discussed in Section 2.4. 

2.3 As-Planned Point Clouds 

The next step consists in computing, for each of the input as-built scans, a corresponding (virtual) 

as-planned scan. This is done using the 3D model and the same scanner location and scan resolution. 

Each as-planned point is calculated by projecting a scanning ray on the 3D model. The result of this 

process is not only an as-planned scan, but also its segmentation into NObj point clouds; one per object 

(that includes all the points that projected onto that object). Note that any ray that doesn’t intersect any 

model object is discarded; i.e. we do not retain any NonModel as-planned point cloud. 
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2.4 Object Recognition 

The recognized, occlusion, non-model and as-planned point clouds from all scans are then 

aggregated. Each model object then has: 

 A matched (or recognized) point cloud containing all the scanned points from all scans matched 

to that object. 

 An occlusion point cloud containing all the points occluding that object. 

 An as-planned point cloud containing all the as-planned points matched to that object. 

These different point clouds are jointly used to infer the recognition of each model object. For the 

purpose of robustness to varying scanner-object distances and scan resolutions, recognition is not 

performed based on the size of the point clouds, but on the surface areas that they cover (see [34] for 

details). The result is for each model object: 

 A recognized surface             summing the surface areas covered by all the 

matched/recognized cloud points: 

            ∑   
 
    (1) 

where n is the number of points matched to the object and Si is the surface covered by the 

ith matched point. 

 An occlusion surface           summing the surface areas covered by all the occlusion cloud 

points (calculated similarly to Srecognized). 

 An as-planned surface          summing the surface areas covered by all the as-planned cloud 

points (calculated similarly to Srecognized). 

These different surface areas are finally used to infer the recognition of each model object. For this, 

we propose the following rule: 

 

In the rule above, we use Smin= 500cm2 that is large enough to ensure that there is sufficient support 

from the data to infer recognition (in the experiment reported below, 500cm2 corresponds 

If (                 or                 
 ), 

    then the object is considered recognized; 

    else the object is not recognized. 
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approximately to the surface covered by 800 points at 5m from the scanner). However, this high value 

will prevent the recognition of objects whose recognizable surface (Splanned - Soccluded) is already smaller 

than Smin. To address these cases, the second criterion is used with: 

            
           

             
 

           

                  
 (2) 

In Equation (2), Splanned - Soccluded estimates the surface of the object that is theoretically visible, and 

consequently recognizable, from the scanner’s location. As a result, %recognized estimates the percentage 

of recognizable surface that is recognized. In the recognition rule above, we use %r
min= 50%. 

While the rule above provides a binary decision on the recognition of object, it can be noted that a 

low value of %recognized also indicates that fewer points than expected are recognized. Therefore, %recognized 

could be used to assess the level of confidence with which objects are recognized. However, %recognized 

depends on the number of matched points (or more exactly their covered surface), but doesn’t really 

take into account the deviations between these points and the surfaces they are matched to. In other 

words, %recognized does not fully take account of the deviations that may be observed between the as-built 

and designed positions of objects. To address this, we propose the following metric to assess the level of 

confidence, %confidence: 

            
           
 

             
 

           
 

                  
  (3) 

where            
  ∑ (  |

  

    
|
 
)   

 
     

with n, Si, δi, δmax as previously defined. 

Compared to             (Equation (1)),            
  is the weighted sum of the surfaces covered by 

the points matched to each object, where higher weights are given to points that are closer to the 

object. %confidence thus extends %recognized by taking account for the deviation between the as-built and 

designed positions of objects. 

Note that the proposed point and object recognition metrics as well as recognition confidence level 

constitute additions to and improvements of the approach previously published by the authors in [33] 

and [34]. 
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2.5 Theoretical performance analysis 

In this section, we conduct a theoretical performance analysis of the proposed Scan-vs-BIM 

recognition process for MEP works, focusing on the risk of false negatives, false positives as well as 

confusions: 

False Negatives (objects present but not recognized): The recognition rule has been designed to be 

robust with regard to the recognition of objects that are small or that are highly occluded. Nonetheless, 

the value of δmax constrains the amount of deviations between the actual and design position (both 

location and orientation) of objects that the system can handle. As discussed earlier, MEP elements may 

present deviations much larger than structural elements, which may show the limit of the proposed 

approach for tracking MEP works. 

False Positives (objects recognized but not present): The chosen value of Smin may first seem to be 

not sufficiently large to avoid false positives. However, we remind that Smin is the surface covered by 

scan points matched to the object and that this matching requires closeness both in distance and 

surface normal orientation. The combination of these two rules reduces the risk that points be matched 

to the wrong object, and therefore the risk of false positives. Furthermore, in the experiment reported 

below, 500cm2 corresponds approximately to the surface covered by 800 points at 5m from the scanner, 

which is a fairly large number of points. A false positive could thus only occur when an object has been 

positioned on site in a way that part of its surface is at a location and with an orientation close to those 

designed for a 3D model object. Nonetheless, we will show that the recognition confidence level 

%recognized provides valuable information that can be leveraged to prevent such errors. 

Confusions: An important situation when a false negative and a false positive can jointly occur is 

when a model object has an actual position that significantly deviates from its design position (false 

negative) but this actual position is such that its surface matches the design position of the surface of 

another model object (false positive).  Such a situation results in what is called a confusion, and the 

current system is theoretically unable to address such challenging cases, although, as discussed above, 

the recognition metrics are designed to reduce the risk of false positives. 
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3 Experiments 

An experiment has been conducted using real life data to evaluate the performance of the 

proposed approach for tracking MEP works.  

3.1 Data 

The data collected include 2D CAD drawings and frequent laser scans of the Engineering VI Building 

at the University of Waterloo, a five-storey, 100,000-square-foot building that is designed to shelter the 

Chemical Engineering Department of the university. A 3D CAD model was then created by the authors 

following accurately the information provided in the 2D drawings. 

The project was a perfect fit for this study, since a chemical facility like the Engineering VI Building 

provides a large number of pipes and ducts designed to: (1) provide water and gas to different 

laboratories, and (2) collect and evacuate chemical fumes from them. The attention of this study was 

focused on the service corridor of the fifth floor of the building because of the abundance of pipes 

coming from the lower levels and going all the way up to the penthouse. The 3D CAD model created 

from those 2D drawings by our research team is shown in Figure 1. 

 

Figure 1: 3D model of the 5th floor corridor Engineering VI. 

The laser scanner used in this study is a FARO Laser Scanner LS 880 HE. The scanner implements 

phase based technology, and its main technical characteristics are given in Table 1 [41]. The service 

corridor of the 5th floor of the building, with dimensions 31.0m x 3.4m, was scanned from June 2010 to 

February 2011, but the experimental results presented in this paper were obtained using only the scans 

acquired on February 5th 2011 because they contain data from a larger number of pipes and ducts. Due 

to the narrowness of the corridor and density of pipes and ducts, six scans were acquired along the 

corridor (see Figure 2). Each scan contains about 1,000,000 points, with horizontal and vertical 

resolutions of 2200µrad and 4400µrad respectively (i.e. 0.24° x 0.48°). Registration of the scans with the 
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3D model was achieved using the approach described in [40], using the wall, floor and ceiling planes as 

registration landmarks. Accurate registration was achieved for each scan, with an average of around 

30,000 scan points matched to the planes and an average mean square error of 58mm2. The 3D model 

and integrated point cloud illustrate the relative density of pipes and ducts as well as the limited access 

that led to a fair amount of occlusions. 

Table 1: Characteristics of the FARO LS 880 HE scanner 

Laser Type: 785nm; near infrared 

Distance:  Range: 
    Accuracy: 

0.6 m to 76m. 
± 3 mm @ 25 m. 

Angle:    Range: 
   Max. Resolution: 

Hor: 360°; Vert: 320° 
Hor: 13 μrad; Vert: 157 μrad 

Acquisition Speed: up to 120,000 pts/s 

 (a) 

 (b) 

Figure 2: Ensemble of point-clouds acquired on the 5th floor service corridor of the E6 Building.  
(a): top view of the registered point clouds with the location of the six scans shown in red;  

(b): view of inside the corridor from one of the scanning locations. 

3.2 Recognition Results 

Figure 3 shows the portion of the 2D drawing presenting a top view of the mechanical pipes and 

ducts in the investigated corridor.  The figure highlights the result of a manual identification in the scans 

of the actual presence of the different mechanical objects. This information is not used by the 
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recognition system; it is solely used as ground truth for the calculation of its performance, as explained 

later. 

 

Figure 3: Manual analysis of the presence of mechanical elements in the scans:  

Yellow: element present; Blue: element absent. 

Figure 4 illustrates the object recognition results obtained for δmax=30mm, αmax=45°, Smin=500cm2 

and %r
min=50%.  Figure 4(a) highlights which objects are correctly recognized (true positive), incorrectly 

recognized (false positive), correctly not recognized (true negative) and incorrectly not recognized (false 

negative). Figure 4(b) further details these results by showing the level of confidence, %confidence, for each 

object. Objects are colored based on %confidence and grouped in three categories of level of confidence: 

High (50%<%confidence); Medium-low (5%<%confidence <50%); and Very low (%confidence <5%). These categories 

were defined ad-hoc and were found to capture the different situations encountered. Table 2 

summarizes the results of Figure 4. 

(a) 

(b) 

Figure 4: Recognition results obtained for δmax=30mm, αmax=45°, Smin=500cm2 and %r
min=50%: 

(a) Recognition decision: Green: true positive; Red: false negative; Blue: true negative; Magenta: false 
positive; (b) Level of confidence: Green: high level of conference (50%<%confidence ); Turquoise: medium 

to low level of confidence (5%<%confidence <50%); Dark Blue: very low level of confidence (%confidence 
<5%). 

Table 2: Summary of the recognition and confidence level results shown in Figure 4. 

Actual State 
Recognized 

State 
Total 

%confidence 

High 
Medium

-low 
Very 
Low 

Present Present 26 3 19 4 
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Absent 6 0 0 6 

Absent 
Present 1 0 0 1 

Absent 39 0 0 39a 
a
 For a large majority of true negatives, %confidence is actually null. 

3.3 Performance Analysis 

Information in the column ‘Total’ in Table 2 enables the calculation of commonly used recognition 

performance metrics, namely Precision and Recall. Precision is the percentage of objects recognized that 

are actually present in the scan(s) (see Equation (4)); and Recall is the percentage of objects present in 

the scan(s) that are actually recognized (see Equation (5)). A high Recall rate indicates that most building 

3D elements present in the scans are recognized, hence a good performance with regard to false 

negatives; a high Precision rate indicates a good performance with regard to false positives. 

          
∑  

∑ 
 

∑  

∑   ∑  
  (4) 

       
∑  

∑  
 

∑  

∑   ∑  
  (5) 

where P = Positive (i.e. recognized), TP = True Positive, FP = False Positive, Pr = Present, and 

FN = False Negative. 

 

Precision and false positives: With a precision of 96% [= 26 / (26 + 1)], it appears that the system 

performs well with regard to false positives. Although this may be due to the particular context of the 

experiment, this is also explained by the combination of distance and normal orientation criteria for 

matching points to model objects that minimizes the likelihood that a point is matched to the wrong 

object (see example in Figure 5(a)). False positives can thus occur only if an object (contained or not in 

the 3D model) has a part of its surface that is similarly positioned (both location and orientation) as the 

surface of another object contained in the 3D model. In the experiment conducted by the authors, one 

such false positive occurs as illustrated in Figure 5(b) where a small pipe not contained in the 3D model 

is positioned in a way that the larger one is wrongly recognized. However, as shown in Table 2, the level 

of confidence in the recognition of that pipe is actually estimated by the system to be very low. This 

demonstrates the value of the proposed level of confidence metric. 
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 (a)   (b) 

Figure 5: False positives: (a) Two examples of potential false positives avoided by the system. In both 
cases, none of the scanned points is matched to any of the two objects (thanks to the surface normal 

matching criterion); (b) False positive encountered in the reported experiment; a small pipe not 
contained in the 3D model is positioned in a way that the pipe (green) is wrongly recognized. 

Recall and false negatives: With a recall of 81% [= 26 / (26 + 6)], the system appears not to perform 

well in recognizing installed MEP objects. In fact, this performance is much lower than the one 

previously reported on tracking structural work, where recall and precision rates both achieved nearly 

100% [35][36]. In addition, the levels of confidence reported for MEP elements is generally below 50%, 

which is also much lower than what the authors have observed for structural elements (e.g. >80% for 

the walls delimiting the corridor, and similar results with other datasets). The reason for the high rate of 

false negatives is due to the fact that, as was anticipated, installation of mechanical elements is 

geometrically less constrained than that of structural elements, so that the actual and designed 

positions of some mechanical elements may differ. This is what happens for the six false positives 

reported in Table 2; two of these are illustrated in Figure 6. From this, it is concluded that the proposed 

approach for object recognition, that has shown very good performance for tracking structural works, is 

not adequate for tracking MEP works (at least when traditional fabrication methods are used, as 

discussed later in Section 5.2). 

 

Figure 6: Two of the six false negatives. The objects are shown in red at their designed location,  
and in transparent orange at their actual one (in the point cloud). 
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Level of confidence %confidence: Table 2 indicates that true positives present a wide range of value for 

%confidence. This actually confirms the presence of deviations between the as-built and designed positions 

of MEP elements. As shown in Figure 7, there is indeed a good correlation between values of %confidence 

and the level of these deviations. It must be noted that in one occasion, a very low level of %confidence is 

observed that is not just due to position deviation, but actually due to the object (a duct) having an as-

built shape different from its designed one.  

 
(a) Elements recognized with high level of confidence. 

 
(b) Elements recognized with medium level of confidence. 

Figure 7: Correlation between level of confidence and deviation between as-built and designed 
locations for recognized objects. Objects are shown in gray at their designed location, and in 

transparent orange at their actual one (in the point cloud). 

In summary, while the proposed Scan-vs-BIM system does not perform well in recognizing all 

objects in a scene, it is however able to recognize objects built as-planned, given pre-defined tolerances. 

Thus, by specifying tolerances for point deviation (i.e δmax) and overall object deviation (e.g. %c
min to 

threshold %confidence), the proposed system can automatically recognize all objects built within those 

tolerances. This has two important potential applications: 

1. Dimensional quality control: “Percent built as designed” is a term that is emerging in 

practice [42]. Although the authors have not identified a clear definition of it, in essence it 

aims at integrating progress and quality performance, by quantifying the overall deviation 

between the designed state – e.g. as defined in the 3D (BIM) model – and as-built state of 
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projects. Using the proposed system with defined tolerances, an estimate of “percent built 

as designed” with focus on geometry/dimensions could be obtained automatically. 

2. Delivery of true as-built 3D (BIM) models: As reported in the literature review, academia 

and industry are currently putting significant efforts into developing robust and efficient 

Scan-to-BIM algorithms, supporting the reconstruction of true as-built BIM models from 

laser scanning data. These approaches systematically aim at re-modeling entire facilities 

from scratch, in order to address the most general cases where no prior information is 

available. However, in the case of projects (new builds or renovations) for which 3D BIM is 

used during design (slowly becoming standard practice), the prior information contained in 

the 3D BIM model can be leveraged. Using the proposed Scan-vs-BIM system with specified 

tolerances, objects that are within tolerances with regard to their designed shape and 

position can be automatically identified. These objects would not need to be remodeled, so 

their designed position and shape can be considered adequate for re-use in the as-built 3D 

model. Engineers would then only need to focus their attention on re-modeling those 

objects with deviations beyond tolerances. This filtering functionality could save significant 

amounts of time in preparing true as-built 3D models to be delivered to clients. This idea is 

considered as part of a new data processing system that is introduced later in Section 4. 

3.4 Sensitivity Analysis 

The proposed system requires a certain number of parameters to be defined including: δmax, αmax, 

Smin, %r
min, and eventually %c

min. We focus our attention on two parameters that are likely to impact the 

performance reported earlier: δmax and Smin. As a sensitivity analysis, the experiments below show the 

impact of different values of δmax and Smin on the recognition performance. 

δmax: Results obtained for δmax=10mm, δmax=50mm and δmax=70mm are shown in Figure 8, and 

summarized in Table 3 along with those obtained for δmax=30mm (all other parameters remaining 

unchanged). As expected, the recall and level of confidence increase with δmax, but this increase is more 

significant from 10mm to 30mm than from 30mm to 70mm.  Regarding false positives, precision is not 

significantly impacted although an additional false positive occurs for δmax=50mm and a third one occurs 

for δmax=70mm. Although this should be confirmed by further experiments, these results indicate that 

δmax should probably be set between 30mm and 50mm. Below 30mm, the risk of false negatives 
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increases sharply while precision is likely to improve only marginally; above 50mm, the risk of false 

positive increases while recall will likely increase only marginally. 

 

(a) 

 

(b) 

 

(c) 

Figure 8: Recognition results for δmax=10mm (a), δmax=50mm (b) and δmax=70mm (c). 
The same color-coding as in Figure 4 is used. 

Table 3: Summary of the recognition results for δmax=10mm, δmax=50mm and δmax=70mm (Figure 8)  
as well as δmax=30mm (Figure 4 and Table 2). 

δmax 
(mm) 

Actual 
State 

Recognized 
State 

Total 
%confidence 

High 
Medium

-low 
Very 
low 

10.0 

Present 
Present 22 1 13 8 

Absent 10 0 0 7 

Absent 
Present 1 0 0 1 

Absent 39 0 0 39a 
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30.0 

Present 
Present 26 3 19 4 

Absent 6 0 0 6 

Absent 
Present 1 0 0 1 

Absent 39 0 0 39a 

50.0 

Present 
Present 27 6 18 3 

Absent 4 0 0 4 

Absent 
Present 2 0 0 2 

Absent 38 0 0 38a 

70.0 

Present 
Present 27 7 18 2 

Absent 4 0 0 4 

Absent 
Present 3 0 1 2 

Absent 37 0 0 37a 
a
 For a large majority of true negatives, %confidence is actually null. 

Smin: Results obtained for Smin=100cm2 and Smin=1000cm2 are shown in Figure 9, and summarized in 

Table 4 along with those previously obtained for Smin=500cm2 (all other parameters remain as initially 

defined). Note that %confidence is independent of Smin, and so is not analyzed here. As expected, the recall 

decreases as Smin increases. But, this decrease is more significant from 500cm2 to 1000cm2.  Regarding 

false positives, precision seems to be rapidly impacted for values of Smin below 500cm2. As a result, 

although this should also be confirmed by further experiments, these results indicate that a value of Smin 

around 500cm2 seems appropriate to optimize the quality of the results. 

(a) 

 (b) 

Figure 9: Recognition results for Smin=100cm2 (a) and Smin=1000cm2 (b) 
The same color-coding as in Figure 4 is used. 

Table 4: Summary of the recognition results for Smin=100cm2mm and Smin=1000cm2 (Figure 9)  
as well as Smin=500cm2 (Figure 4 and Table 2). 

Smin 
(cm2) 

Actual 
State 

Recognized 
State 

Total 
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100 

Present 
Present 26 

Absent 6 

Absent 
Present 4 

Absent 36 

500 

Present 
Present 26 

Absent 6 

Absent 
Present 1 

Absent 39 

1000 

Present 
Present 23 

Absent 8 

Absent 
Present 1 

Absent 39 

4 Improved Data Processing System 

Although the proposed Scan-vs-BIM approach demonstrates some advantages and robustness, the 

results reported here highlight that the good performance achieved with structural works is far from 

being achievable with MEP works. This is due to the flexibility and resulting variability in MEP 

component installation.  

We note that the common Scan-to-BIM -type object recognition methods reviewed in Section 1 (as 

reviewed in [27][28][29]) actually show complementary strengths and limitations. Indeed, while unable 

to provide a direct identification of objects, they are however insensitive to the actual locations of 

objects within the scene (the main limitation of our approach).  

This leads the authors to propose a system that integrates Scan-to-BIM and Scan-vs-BIM techniques 

within a unified framework that leverages the strengths of both approaches. The system does not focus 

on any type of works (e.g. MEP), but is aimed to be a system for life-cycle BIM model dimensional 

information management. It would thus support activities such as progress control, dimensional quality 

control and subsequently efficient delivery of dimensionally-correct as-built BIM models during 

construction; and later on dimensional monitoring during the Operations and Maintenance (O&M) 

phase of the asset life. 
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The proposed BIM model dimensional information management system, illustrated in Figure 10, 

processes 3D point clouds (from laser scanning or photogrammetry) – possibly augmented with 

additional sensed data such as RFID (the potential of using RFID with laser scanning is shown in [43]), 

UWB or digital pictures – of the structure in its current state (as-built during construction; as-is during 

operations). The overall system is composed of three consecutive processes: 

1. An automated object recognition process employing techniques currently considered in 

Scan-to-BIM processes for recognizing objects of interest (with basic or complex 

geometries) in the sensed data. This process is supervised, driven by prior geometric and 

semantic (including topology) information about the objects being searched; this prior 

information comes from the most current BIM model (as-designed during construction; as-

built and as-is later on during operations) and may be completed with other information 

about additional objects that may be expected.  

In more detail, this process would first extract primitive geometries (e.g. planes) and their 

configuration (i.e. topology) [44][27]. This information would then be analyzed using the 

prior information on surface patch geometry and topology contained and extracted from 

the BIM model. This latter step differs from the approach proposed in [44][27], mainly 

because they assume a context without prior BIM models. The output of this process is a list 

of recognized objects with their configuration and associated levels of confidences. 

2. An automated Scan-vs-BIM process that employs the recognition results of step 1 and 

further prior information contained in the most current BIM model, e.g. expected object 

location and orientation; model topology , in an object identification process based on the 

one proposed in this paper.  The output of this process is a list of identified objects with 

associated levels of confidences, as well as information on deviations between the as-built 

[current as-is] and as-designed [previous as-is] BIM models. These deviations may be 

displacements and deformations, or unidentified objects. 

3. A semi-automated BIM Model Correction process for correcting any identified deviations 

using automated, semi-automated, and manual workflows and thus updating the BIM 

model to a new most current as-built [as-is] state.  
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While the system altogether enables the management of a dimensionally correct as-built [as-is] 3D 

BIM model during its entire life-cycle, steps 1 and 2 may also be used alone during the construction 

phase for dimensional quality control and quality assessment (including for estimating of the “percent 

built as planned” metric presented earlier).  

Furthermore, it is important to point out that most of, if not all, the different approaches reviewed 

in Section 1 (with focus on Scan-to-BIM or Scan-vs-BIM) could be integrated within the first or second 

step of this new system. 

 

Figure 10: Proposed data processing system for life-cycle BIM model dimensional information 
management. 

Taking the example of pipework, step 1 enables the recognition of objects such as pipes (cylinders), 

elbows (torus) and valves (complex objects). Step 2 then enables their identification by matching them 

with individual components contained in the BIM model, using a combination of physical and 

appearance proximity metrics. Compared to the current system, this new step 2 ensures that the points 

matched to a cylindrical pipe themselves form a cylinder, further ensuring the level of confidence in the 

recognition. Step 3 finally enables the correction of deviations observed for these objects.  

This overall process should be initiated during the construction stage in order to control 

dimensional quality and produce a dimensionally correct 3D BIM model, and continued during O&M in 

order to update the model over time and maintain a history of deviations that could support 

maintenance decision making processes. 

Zeibak-Shini [45] have recently proposed a framework for reconstruction of as-is BIM models of 

deformed structures in post-disaster building assessment using TLS data and a prior BIM model, which is 

very similar to the one proposed here.  Like in our approach, they propose to use surface primitives, 

their configuration and prior information contained in the BIM model in order to recognize as-built 
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objects. The main difference seems to be on the reconstruction of the as-built BIM model; while they 

seem to simply recognize (actually identify) objects based on matched surface patches and retrieve their 

as-built shape from the TLS data only, the approach proposed here differently aims to “deform” the 

prior BIM model in order to make it fit the as-built data. Interesting, they refer to their last step as “BIM-

to-BIM”, a term that would actually (better) suit the third step of the approach proposed here. 

5 Conclusion and Future Work 

5.1 Conclusion 

Most of the research effort on automated construction progress tracking has focused so far on 

structural work. However, other building components, and in particular MEP systems, constitute a large 

portion of construction costs and thus need to be appropriately tracked and managed. Knowledge of 

their as-built status is critical for control and earned value measurement. The work presented here 

constitutes one of the few reported attempts to address this problem, and is unique in assessing a Scan-

vs-BIM framework for such application. 

An experiment using data from a utility corridor containing a few dozens of pipes and ducts is 

reported. While results are reported for this case study only, it must be emphasized that it is 

representative of situations typically encountered. 

The results with regard to object recognition, and consequently the potential for progress tracking, 

are however disappointing. The authors were conscious that the installation of MEP pipes and duct in 

traditional ways is not as constrained as structural works, so that elements may be installed in positions 

that differ, sometimes significantly, from the positions defined by the engineer in the design 

drawings/model. The experiments have confirmed that these deviations can significantly impact the 

performance of the proposed Scan-vs-BIM system that has previously been shown to perform well for 

tracking structural works. 

Beyond demonstrating the limitation of the author’s Scan-vs-BIM approach for tracking 

construction works, the results reported further suggest (and some voices have started to raise this 

issue) that clients should not consider as-designed 3D BIM models entirely usable for Operation & 

Maintenance (O&M) and future refurbishment, as many on-site changes or adjustments may not have 

been reported in those models.  
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Nonetheless, other valuable results have emerged from the experiments, particularly with regard to 

the newly proposed level of confidence metric, %confidence. Although this remains to be confirmed with 

additional experiments, results reported here suggest that %confidence is a valuable metric to estimate 

deviations (both minor and major) between the as-built and as-designed position and shape of objects; 

and this property could make the proposed system valuable for automatically estimating the emerging 

performance metric “percent built as designed”. 

5.2 Future Work 

The results reported in this paper answer one question, but also raise many new questions that 

require future investigations. First, future work should thoroughly assess the value of using the 

proposed Scan-vs-BIM systems for (1) estimating “percent built as designed”, and (2) accelerating of as-

built modeling. 

Then, the authors note that the experiments reported here used data from a project where MEP 

pipes and ducts were installed using traditional methods (i.e. cut and fit on site). With the advent of BIM 

and the increasing use of off-site pre-fabrication and pre-assembly, the likelihood that MEP elements 

are installed in similar positions as designed should significantly increase. The proposed Scan-vs-BIM 

system may perform much better in such context. This should thus be investigated by acquiring data 

(laser scans and 3D models) from different projects actively employing pre-fabrication and pre-assembly 

of MEP systems. 

Finally, the authors recognize that the risk of false positives, including confusions, remains 

significant when using the proposed Scan-vs-BIM; this approach should thus not be used alone, 

particularly when it comes to MEP works. Further work should thus investigate integrating the proposed 

system with additional techniques for object recognition. With this in mind, the authors have proposed 

a new data processing system for 3D BIM model dimensional information management that aims to 

integrate supervised Scan-to-BIM and Scan-vs-BIM approaches in an overall superior system. Such a 

system now needs to be developed, and its performance assessed.  
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