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Abstract

Automated and robust retrieval of three-dimensional (3D) Computer-Aided Design
(CAD) objects from laser scanned data would have many potentially valuable appli-
cations in construction engineering and management. For example, it would enable
automated progress assessment for effortless productivity tracking, automated 3D
image database searching for forensic and legal analysis, and real-time local mod-
eling for automated equipment control and safety. After reviewing and analyzing
previous research in the field of automated object recognition, this paper presents
a new approach for robust automated recognition/retrieval of 3D CAD objects in
range point clouds in the Architectural/Engineering/Construction & Facility Man-
agement (AEC-FM) context. This approach is validated in laboratory experiments.
A first experiment demonstrates that this new approach can efficiently and robustly
automatically retrieve 3D CAD model objects in construction laser scanned data.
A second experiment demonstrates how this approach can be used for efficiently
assessing construction progress. The results presented here are preliminary but con-
clusive for proof of concept. More extensive field experiments in this and other
application areas will follow to characterize performance trade-offs in practice.
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1 Introduction1

The Architectural/Engineering/Construction - Facility Management (AEC-2

FM) industry constantly needs to assess project performance with as much3

precision as possible and as fast as possible. Performance is tracked using4

metrics that meaningfully and efficiently estimate it. For instance, construc-5

tion progress and productivity tracking requires assessing progress in terms of6

quantities and elements put in place, tests conducted, etc. Construction qual-7

ity assessment requires, among other aspects, assessing the three-dimensional8

(3D) similarity between as-built and as-planned 3D objects. Similarly, con-9

struction dispute resolution and forensic analysis may in the future require10

exhaustive searches of range point cloud databases to acquire incontrovertible11

evidence of facts on the ground. In all these examples quantities and struc-12

tural elements can be described in design documents and tracked as 3D shapes.13

Tracking quantities, elements, and quality automatically with the aid of au-14

tomated recognition/retrieval of 3D Computer-Aided Design (CAD) objects15

from construction range point clouds would thus be beneficial and is possi-16

ble with the method described in this paper. For brevity, the authors focus17

primarily in this paper on the application to construction progress tracking.18

Traditional practice for construction progress assessment relies on intensive19

manual data collection and processing. This is labor intensive, expensive, and20

generally results in partial and sometimes erroneous information. As a result,21

it is difficult to make appropriate and timely management decisions ([1]; [2];22

[3]).23

The recent and rapid development of laser scanners, also referred to as LAser24

Detection And Ranging (LADAR), allows precise and comprehensive acquisi-25

tion of range point clouds. Laser range point clouds are often referred to as26

range images or 21

2
D data because they contains 3D information about visible27

surfaces only. In the specific context of construction progress assessment, laser28

scanners can be used to acquire range point clouds from an asset in construc-29

tion at any time. Acquired range point clouds can be analyzed to identify the30

presence of 3D project objects, so that the quantity of work that has been31

performed up to that specific time can be estimated. The advantage of using32

laser scanning data for assessing construction progress is that it directly iden-33

tifies in-place quantities. It is thus potentially more robust than and at least34

complimentary to other approaches that indirectly calculate work progress —35

e.g. by recording in real-time the location of construction resources for infer-36

ring production quantities ([3]; [4]). However, industry managers could benefit37

from laser scanning technologies for effortless construction progress tracking38

only if they can be used to obtain reliable and high-value information, rapidly39

and, if possible, automatically [5].40
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A new approach is presented in this paper that allows robust automated re-41

trieval of 3D CAD objects from range images. Sections 2 and 3 review exist-42

ing approaches for automated object recognition in sensed data, and analyze43

their applicability and expected efficiency and robustness in the investigated44

context. This analysis leads to the formulation of a new approach described45

in Section 4. Section 5 presents two laboratory experiments, conducted in46

the Centre for Pavement And Transportation Technologies (CPATT) at the47

University of Waterloo, that validate this new approach and demonstrate its48

applicability to automated construction progress tracking. Section 6 then dis-49

cusses the impact of measurement uncertainties on the proposed approach and50

suggests methods to take them into account. Finally, Section 7 discusses the51

estimations of the different parameters used in the proposed approach and52

how these could be automated.53

2 Automated Recognition of 3D Objects in Range Images54

2.1 Common Approaches to the Object Recognition Problem55

The automated recognition of objects in sensed data, also referred to as object56

recognition is not a new problem and previous research in this field has been57

extensive, especially for application in robotics. In [6], Arman & Aggarwal58

propose a definition of the object recognition problem as “locating a desired59

object in a scene and determining its exact location and orientation”. In this60

definition, the combination of the location and orientation of an object is61

also generally referred to as its pose. Systems performing object recognition62

must have some a priori knowledge of the search object(s) (e.g. shape, color,63

temperature). This a priori knowledge is generally contained in an object64

model. As a result, such systems are generally referred to as model-based object65

recognition systems and they generally follow the following process:66

(1) A data representation is chosen to meaningfully describe the object model,67

(2) Features are extracted from the object model described using the chosen68

data representation,69

(3) Features are extracted from the sensed data described using the same70

data representation,71

(4) Object features are matched to sensed data features in order to infer the72

recognition of the object,73

(5) The poses of recognized objects are estimated.74

The choice of the data representation determines the recognition strategy and75

thus has a significant impact on the efficiency and robustness of the recognition76

system. An adequate representation is: unambiguous, unique, not sensitive,77
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and convenient to use [6]. A review of most common strategies for object78

recognition can be found in [6] and some examples of systems for automated79

recognition of 3D objects in range images can be found in [7], [8] and [9].80

The main challenge faced by typical model-based object recognition systems81

is that they are based on the extraction of features from both the search82

objects’ models and the sensed data. These systems can be referred to as83

feature-based model-based object recognition systems. The level of difficulty84

in the extraction of features increases with the “complexity” of the search85

context, and this “complexity” is related to the following factors:86

Unknown pose of each object. Object recognition systems generally as-87

sume that the pose of each object is a priori unknown. This assumption is88

genuine in most general search cases when the only a priori knowledge is89

the set of search object models.90

Unknown relative pose of search objects . Similarly, object recognition91

systems generally assume that the relative pose of two search objects is a92

priori unknown. This assumption is also genuine in most general search93

cases.94

Number of search objects. Object recognition systems generally search for95

objects one at a time in the scanned data. As a result, their computational96

complexity is proportional to the total number of search objects.97

Occluded and cluttered scenes. Most object recognition systems genuinely98

assume that scanned scenes may include data about any object, searched99

or not searched. This however makes efficient and robust automated feature100

extraction very difficult.101

2.1.1 Spin-Image Approach102

In [8], Johnson & Hebert present another model-based approach that is based103

on 2D data representations called spin images. This approach is interesting104

because it is not feature-based as spin-images of the entire range data are105

directly compared to the spin-images of the search objects’ models. In this106

approach, recognition is achieved as follows:107

(1) All search objects are represented as polygonal surface meshes,108

(2) A spin image is calculated for each vertex of the mesh representation of109

each object,110

(3) The scanned data is represented as a polygonal surface mesh,111

(4) Random vertices are identified in the sensed data mesh and spin images112

are calculated for each of them,113

(5) Each spin image obtained from the sensed data is matched with all spin114

images of the search objects,115

(6) For each object, if several spin-image correspondences are found, this116
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object is considered recognized and its pose is estimated.117

The main advantage of this approach is that it is not feature-based and thus118

does not suffer from the limitations of feature extraction algorithms. Addi-119

tionally, this approach appears fairly efficient with occluded and cluttered120

scenes (in the experiments, objects up to 68% occluded were systematically121

retrieved). Nonetheless, this method also presents some limitations:122

◦ The scanned scene is approximated with a polygon tessellation, which re-123

sults in a loss of information originally contained in the range image.124

◦ Not all vertices in the scanned data mesh are investigated (20 to 50%),125

meaning that small or very occluded objects are likely to be missed. This126

could be avoided by investigating all vertices in the scanned data mesh, but127

would result in a computational complexity proportional to the number of128

vertices in the scanned scene mesh, which can be very high.129

◦ Computational complexity is proportional to the number of objects and the130

number of spin images for each object. In [8], Johnson & Hebert nonetheless131

show that, for each object, Principal Component Analysis can be used to132

at least reduce the search domain constituted by all its spin images.133

◦ The pose of objects presenting symmetries cannot be ensured since the spin134

image of a symmetrical object in one pose is exactly the same as the one in135

its symmetrical pose.136

◦ Although this method is reasonably robust with object occlusions, it could137

be argued that it would be interesting to be able to retrieve objects more138

than 70% occluded. Recognition of more highly occluded objects could prob-139

ably be achieved here if all vertices in the scanned data were investigated,140

but, as explained above, this would result in higher computational complex-141

ity.142

◦ Finally, this approach recognizes objects by matching 2D object character-143

istics (spin images). This implies that some information contained in the144

21

2
D range data is not only lost while performing the data tessellation, but145

also while calculating each spin image.146

2.2 Application to the Investigated Problem147

The investigated problem of automatically retrieving all construction project148

objects present in a construction site range image has the following character-149

istics:150

◦ The number of objects that should be searched in the scan is the number of151

3D construction objects constituting the project model, which can be very152

large. Additionally, the shape of search objects can be very complex.153

◦ Construction site scenes are generally very occluded and cluttered. Also,154

5



many project elements might be scanned in partial construction status (e.g.155

partially built walls and columns).156

As a result, if feature-based object recognition approaches were to be used157

in this specific context, they would generally be too computationally complex158

and would result in limited recognition results as construction scenes are too159

complex for efficient and robust 3D feature extraction. This feature extraction160

complexity is also increased by the fact that it is not possible to recognize all161

the features of a given model in one range point cloud due to occlusions and the162

fact that range information is only 21

2
D. Previous works in civil engineering163

investigating the use of feature-based object recognition approaches to this164

problem acknowledge these limitations ([10], [11],[12]).165

Similarly, if the spin-image approach was used, it would generally be too com-166

putationally complex due to the number of search objects, the number of167

spin images for each object, and the number of scanned points. Also, it could168

suffer from the highly cluttered and occluded characteristic of construction169

scenes. Nonetheless, the spin-image approach would likely be more robust170

than feature-based object recognition approaches. The spin-image approach is171

thus further investigated and feature-based approaches are discarded for the172

remaining of this analysis.173

3 The Context: New AEC-FM Technologies174

3.1 Project 3D CAD Models175

In recent decades, the AEC-FM industry has been experiencing a rapid in-176

crease in the use of project 3D/4D CAD models. Project 3D CAD engines177

allow for the development of exact and comprehensive project designs in the178

form of 3D models. Project 4D CAD models enhance project 3D CAD models179

with schedule information. Project 3D/4D models undeniably increase design180

quality, management and communication among stakeholders, and decrease181

the number and impact of changes occurring during the project life cycle [13].182

Additionally, they are now used as the central components of more complex183

AEC-FM management models such as Building Information Models (BIM).184

Project 3D/4D CAD models do not constitute a basic library, but a spatially185

organized library of the project 3D objects. The relative pose of each pair of186

3D project objects is thus expected to be the same in the 3D CAD model187

as in reality once they are built. Consequently, by using project 3D CAD188

models in 3D object recognition systems, the recognition of one object would189

provide a priori information on where to search for all the other objects. Or,190
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from another perspective, the entire project 3D CAD model could be searched191

simultaneously.192

Project 3D CAD models present another interesting advantage, regarding oc-193

clusions. From a given project 3D view point, all occlusions to a project 3D194

object due to other project 3D objects are expected to occur similarly in195

reality and in the project 3D CAD model. Such information, if efficiently in-196

corporated in 3D object recognition systems, could significantly improve their197

robustness, especially when dealing with potentially very occluded scenes such198

as construction sites.199

3.2 (Geo-) Referencing200

Along with 3D CAD engines, global positioning technologies (i.e. GPS for201

location and digital compasses for orientation) are being used more in the202

AEC-FM industry since their accuracy and precision have become acceptable.203

Regarding location estimation, while Differential GPS (DGPS) can achieve204

sub-feet accuracy, Relative Kinematic Positioning (RKP) GPS technology can205

improve location estimation accuracy up to a couple of inches. Further, GPS206

technologies remain a major area of research and it is not unrealistic to imagine207

sub-inch accuracy systems in the near future. Similar conclusions can be made208

for orientation estimation systems such as digital compasses that typically209

achieve accuracies of half a degree.210

Both field data and 3D CAD models can be geo-referenced. Therefore, field211

data can be typically registered into the coordinate frame of the model. In212

the AEC-FM industry, global positioning technologies are thus already used213

to enable management to track position of any type of important resource in214

real-time on project sites for applications as diverse as productivity tracking,215

lay-down yard management or safety.216

In the problem investigated here, using (geo-) referencing technologies would217

simplify the search of the project 3D CAD model in the scanned data as the218

position of each search object in the scanned data would be a priori known (at219

least estimated). The authors acknowledge the limited accuracies of current220

(geo-) referencing technologies. Nonetheless, these technologies can be used to221

at least provide good pose estimations, and Section 6 discusses how, in the222

investigated problem, the pose of 3D CAD model in the scanned data could223

be optimized once a good estimation is obtained.224
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3.3 Impact on the Investigated Problem and Solution225

The technologies above — that are already being used on construction projects226

but in other applications — could be leveraged in the investigated problem.227

Used with the spin-image approach, it seems that its major limitation — its228

computational complexity due to the number of search objects and the number229

of vertices in the scanned scene mesh — could be significantly reduced. Indeed,230

the project model could be searched all at once, and for each scanned scene231

mesh vertex, the project model mesh vertex for which the spin-image matching232

should provide the best result can be known a priori. Finally, thanks to the233

3D referencing, the limitation of this method with symmetrical objects is also234

overcome.235

However, it must be noted that the spin-image approach provides results re-236

garding the overall recognition of each search object, but it is not suited to237

provide detailed recognition results of parts of the search object. The recog-238

nition of each individual project object is important in the investigated prob-239

lem. Therefore, each object must thus be searched individually, not the entire240

project 3D model simultaneously, and the complexity of the spin-image ap-241

proach remains proportional to the number of search objects. Additionally,242

this method is based on the approximation of the sensed data by polygon tes-243

sellation, which results in a loss of information contained in the original data.244

Finally, the data matching is based on a 2D data representation (spin-image).245

The representation of the 21

2
D range data using spin-images thus further re-246

duces the amount of information available for the matching process. As a247

result, the spin image approach cannot achieve optimum object recognition as248

it considers only part of the information contained in the acquired range data.249

Despite these limitations, the authors acknowledge the apparent robustness of250

the spin-image -based 3D object recognition approach. A new model-based 3D251

object recognition approach is nonetheless presented here. This approach uses252

the sensed data (scanned point cloud) in its raw format, it is not feature-based,253

and its complexity is not proportional to the number of search objects as the254

entire project model is searched simultaneously. As a result, this approach255

is expected to be both efficient and robust for the automated recognition of256

project 3D CAD objects in construction range images.257

4 New Approach258

The proposed new approach is based on the idea that, since the performance259

of any approach for automated recognition of 3D object in range images is260

constrained by the sensed data, the best recognition approach can only be261
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obtained if the sensed data is used in its natural representation, here the262

range point cloud. As a result, the authors propose an approach that uses263

the range point cloud as the common 3D object data representation. This264

implies that the project 3D CAD model must be represented as an equiva-265

lent range point cloud. To do this, (geo)-referencing information is used to266

reference the project 3D CAD model in the laser scanner’s spherical coordi-267

nate frame. Then, for each as-built range point, a corresponding range point268

is calculated using the project 3D CAD model as a virtual world. This vir-269

tual world can also be referred to as the expected world or as-planned world270

and the point cloud resulting from the virtual scan conducted in this virtual271

world can be referred to as the as-planned point cloud (by comparison to the272

real as-built point cloud). As-built point features include at least three spatial273

coordinates, that are sometimes enhanced with reflectivity and color infor-274

mation. Similarly, as-planned point features include three spatial coordinates275

as well as any additional information that can be extracted from the project276

3D CAD model when calculating the as-planned point cloud. These features277

may include object color and object reflectivity. But more importantly, one278

additional as-planned point feature that can systematically be extracted from279

the project 3D CAD model is the “ID/name” of the object from which each280

as-planned range point is obtained.281

The challenge of this approach consequently lies on the calculation of the282

as-planned point cloud. A method for this calculation is presented in Section283

4.2. Then, Section 4.3 presents the two metrics that are used for automat-284

ically comparing as-built and as-planned point clouds in order to infer the285

retrieval/recognition of all project 3D model objects.286

4.1 Project 3D CAD Model Format287

Full access to the information contained in the project 3D CAD model is288

necessary in order to practically calculate the as-planned point cloud. However,289

project 3D/4D models generally present the project 3D as-planned data in290

a proprietary 3D CAD engine format (e.g. DXF, DWG, DGN, etc.). Since291

these proprietary formats are protected, the as-planned point cloud calculation292

requires the project 3D CAD model be converted into an open-source 3D293

format. This open-source format must be chosen so that the conversion results294

in as little loss of 3D information as possible.295

In [14] the authors identify one good candidate format that meets this in-296

formation preservation requirement : the STereoLithography (STL) format.297

Detailed information about this format that approximates volume envelopes298

by tessellations of triangles can be found in [15]. It might be argued that, if299

access to proprietary formats is granted, this conversion would not be nec-300
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essary anymore. However, it will be shown in the next section that polygon301

tessellation-based formats such as the STL format present an additional advan-302

tage over native CAD engine formats with respect to the proposed approach.303

4.2 Calculation of the As-planned Point Cloud304

The as-planned range point cloud can now be calculated as follows:305

(1) Using the (geo-) reference information, the STL-formatted project 3D306

CAD model is referenced in the laser scanner’s spherical frame. In this307

coordinate frame, the coordinates of each STL triangle composing the en-308

velop of each object of the project model can be expressed using spherical309

coordinates (instead of natural Cartesian coordinates).310

(2) For each as-built range point, the corresponding as-planned range point311

is assigned the same pan and tilt angles. Then, its range is calculated by312

finding the closest STL triangle intersected by the “ray” traced in the313

direction defined by these pan and angle angles.314

The identification of the closest STL triangle intersected by a ray is a con-315

strained version of the calculation of the projection of a point on a plane in316

a given direction. This problem is fairly straight-forward so that the solution317

won’t be detailed here. Instead, the authors want to emphasize the fact that318

the combination of the project 3D CAD model being referenced in the laser319

scanner’s spherical frame and the project 3D CAD model being converted into320

the STL format presents an opportunity for significant reduction in the compu-321

tational complexity of the identification of the closest STL triangle intersected322

by a ray and thus of the calculation of each as-planned range point. Indeed,323

in this spherical frame, all the vertices of all the STL triangles are expressed324

with spherical coordinates: pan, tilt and range. As a result, the bounding pan325

and tilt values of each STL triangle can be identified. Then, as illustrated in326

Figure 1, it can be noted that the intersection of a ray defined by the two327

angles pan0 and tilt0 can only intersect a STL triangle whose bounding pan328

and tilt angles actually surround the pan0 and tilt0 values. This implies that329

the closest intersected STL triangle can be rapidly identified by analyzing330

only those STL triangles whose bounding pan and tilt angles surround pan0331

and tilt0. Compared to the spin image approach, the complexity of this object332

recognition approach is thus not proportional to the number of search objects.333

It must be emphasized that this complexity reduction is possible because it334

is fairly simple to calculate the bounding angles of a STL triangle and the335

intersection of a line with a STL triangle. If the project 3D CAD model was336

not expressed using a polygon tessellation-based format, but using a native337

CAD format — where each CAD object is represented as the intersection of338
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primitive forms, these calculations would become much more complex.339

(a) Bounding pan angles (b) Bounding tilt angles

Figure 1. Illustration of the selection of STL triangles based on their bounding pan
and tilt angles for identifying the closest STL triangle intersected by a given “ray”.

4.3 The Range Point Matching And Object Recognition Metrics340

Once the as-planned range point cloud has been calculated, it is possible to sort341

the as–planned range points by their object “ID/name” feature (the object342

from which each of them was obtained). This results in an as-planned range343

point cloud for each object constituting the project 3D model (note that each344

object for which no as-planned range point was obtained is simply assigned345

an empty point cloud). Then, for each object as-planned range point cloud,346

each as-planned point can be directly matched to its corresponding as-built347

point. This requires a range point matching metric. After matching each point348

of the object as-planned range point cloud, the recognition of the object can349

finally be inferred. This requires a second metric, the object recognition metric350

(or object retrieval metric).351

4.3.1 Range Point Matching Metric352

Each as-planned range point corresponds to exactly one as-built range point,353

and these two points have the same pan and tilt angles. Their matching can354

thus only be estimated based on the only remaining common feature, the355

range coordinate (although if additional common features exist, they should356

certainly be used). A range point matching metric can thus simply consider357

the difference in their ranges and compare it to a given threshold. For instance,358

an as-planned range point can be considered positively matched to its corre-359
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sponding as-built point if the absolute difference in their ranges, ∆Range, is360

lower than the distance threshold, ∆Rangemin.361

In Section 7, the authors discuss a method to automatically define an adequate362

∆Rangemin threshold that takes into account context-specific factors. In the363

experiments presented in Section 5, a manually a priori estimated threshold364

is however used.365

4.3.2 Object Recognition Metric366

For each project object, once the matching of all as-planned range points with367

their corresponding as-built range points has been assessed, the recognition368

of the object can be inferred. For this, a straight-forward and commonly used369

object recognition/retrieval metric is used: the calculation of the object as-370

planned point cloud retrieval rate, R%, which is the ratio of the number of371

retrieved as-planned range points to the total number of as-planned range372

points. R% can be compared to a threshold R%min to infer the object recog-373

nition/retrieval. It is not however obvious what value R%min should take. In374

fact, whatever the value of R%min, this metric, as is, will not be robust in the375

following two cases:376

Object as-planned point cloud containing only a few points. For in-377

stance, if an object as-planned point cloud contains two points and if one378

point is recognized, then 50% of the as-planned point cloud is retrieved.379

Clearly, such a situation — that can occur when the object is far or very380

occluded, or when the range point cloud density is low — should not lead381

to the recognition of the object, despite the high point cloud retrieval rate.382

Object occluded by non-CAD objects. This may result in objects hav-383

ing unreasonably low retrieval rates although many points are actually re-384

trieved. For instance, in the case where 5% of an as-planned point cloud385

containing 2000 points is retrieved, the retrieval rate is very low, but there386

are still 100 retrieved points and it could be argued that the object should387

be considered retrieved.388

The first situation can be handled by adding to the retrieval metric the condi-389

tion that an object can only be considered for retrieval if its as-planned range390

point cloud contains a minimum number of points, defined by a threshold391

Pnmin. The second situation can be handled by adding to the retrieval metric392

the condition that, if the number of recognized as-planned points is higher393

than a given threshold Rnmin, this is sufficient to consider the object retrieved394

(no need to calculate the as-planned cloud retrieval rate).395

Like for the point matching metric, the authors discuss in Section 7 methods396

to automatically estimate adequate Pnmin, Rnmin and R%min threshold values397

by taking into consideration the context-specific factors such as: the scan point398
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density and distance between the scanner and each search object. However, in399

the experiments presented in Section 5 these thresholds are manually a priori400

estimated.401

This final CAD object as-planned point cloud retrieval metric is summarized402

in Figure 2. The pseudo-code of the overall proposed approach is presented in403

Figure 3.404

Figure 2. Object recognition/retrieval metric.

5 Experimental Results405

In order to test the proposed approach, two indoor experiments have been con-406

ducted using a simple structure made of four columns and one board simulat-407

ing a column-slab structure, a TrimbleTM GX3D laser scanner — the charac-408

teristics of which are presented in Table 1, and the 3D CAD engine BentleyTM
409

MicrostationTM . The first experiment aims at validating the approach. The410

second experiment aims at demonstrating how this approach could be success-411

fully used for automated construction progress assessment.412

It must be noted that, in these experiments, referencing is not performed using413

global positioning sensors but is simply performed manually, and referencing414

uncertainties are not considered. Also, as mentioned earlier, the thresholds415

used in the two metrics are manually a priori estimated.416
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Figure 3. Algorithm for automated recognition/retrieval of STL-formatted project
3D CAD model objects in range point clouds.

5.1 Experiment 1: Approach Validation417

5.1.1 Setup418

In this first experiment, a 3D CAD model of the column-slab structure is ini-419

tially developed using the 3D CAD engine and converted into STL format.420

14



Table 1
Specifications of the Trimble GX3D Scanner

This model is composed of five CAD objects called: column 1, column 2, col-421

umn 3, column 4, and slab (Figure 4). Then, the structure is manually built422

with as much precision as possible with respect to the 3D CAD model. Next,423

the entire scene is scanned with the laser scanner and the STL-formatted424

project 3D CAD model is manually referenced in the laser scanner’s coordi-425

nate frame. Finally, the developed algorithm is run to automatically retrieve426

the STL-formatted 3D objects in the range data. Figure 5 shows the labora-427

tory experimental setup with the column-slab structure and the laser scanner.428

Figure 6 displays the scene scan containing 206, 360 points, the size of each429

being proportional to its associated reflectivity. The following algorithm input430

parameters are used:431

∆Rangemin. An as-planned cloud point is considered retrieved if the dif-432

ference between its range and the range of the corresponding as-built point433

is less than 30 mm (∆Rangemin). Construction generally aims at achieving434

dimensional accuracy within 10-20mm at most. Therefore, the authors con-435

sider that this threshold value is sufficiently high so that objects will not be436

missed due to some low construction dimensional quality, without creating437

false positive matches.438

Pnmin. The retrieval of a CAD object is performed only if its as-planned point439

cloud contains more than 100 points. This value is set somewhat arbitrarily440

and, as will be seen in the results, does not have an effect in this experiment.441

Rnmin. A CAD object is considered detected if at least 500 points of its as-442

planned point cloud are retrieved. Here also, this value is defined somewhat443

arbitrarily and its value does not have any specific impact in the context of444

this experiment.445

R%min. If less than 500 points (Rnmin) of a CAD object as-planned point446

cloud are retrieved, the object is considered retrieved only if its as-planned447

range point cloud retrieval rate is at least 50%. As discussed earlier, it is not448

obvious at this point in this research what is an acceptable R%min value. As449

a result, in the absence of any a priori knowledge for setting this threshold,450

the authors decided to choose this midpoint value.451
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Figure 4. 3D CAD model of the column-slab structure.

Figure 5. Indoor setup with the scanned structure and the laser scanner.

Figure 6. Experiment 1 range point cloud. The size of each point is proportional to
its scanning reflectivity.
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5.1.2 Results452

The retrieval results are presented in Figure 7 and Table 2. Figure 7 displays453

the as-built, as-planned, and retrieved as-planned data. In this figure, only454

1% of the total number of points of each cloud is actually displayed in order455

to increase picture clarity. Also, in the retrieved as-planned point cloud, re-456

trieved as-planned points are displayed with circles and non-retrieved ones are457

displayed with asterisks.458

Table 2 shows that all CAD objects from the 3D CAD model are retrieved. The459

retrieval rates of all CAD objects are high (at least 74%), including column 1460

and column 2 despite the fact that, as can be seen in Figure 6, about 60%461

of their normally visible surfaces are occluded by column 4 and column 3462

respectively. This demonstrates the robustness of this method with respect to463

occlusions due to other CAD objects.464

It is also interesting to note that the slab is detected with a high but slightly465

lower retrieval rate (74%) than the other objects. A reason for this can be found466

in Figure 6. Remember that in this figure the size of each point is proportional467

to its associated reflectivity. Reflectivity can be seen as an estimator of range468

acquisition uncertainty, and it can be noticed that most points obtained from469

the slab, especially from its top surface, have a very low reflectivity. The470

manually set ∆Rangemin threshold might thus have been too low to retrieve471

these specific points. Another reason could be error in vertical referencing.472

Indeed, in this example, a little error in the vertical referencing would shift the473

as-built slab cloud compared to the as-planned one, which would considerably474

alter the object retrieval results. The effect of referencing uncertainty is further475

discussed in Section 6.476

Table 2
Retrieval results of Experiment 1.

Although these experimental results are very positive, it is acknowledged that477

they were obtained in a somewhat ideal indoor setup. In fact, in this ex-478

periment, all CAD objects are retrieved without considering retrieval rates479

(even column 1 and column 2 ) as the total number of retrieved points are480

always higher than Rnmin. In field situations, it is likely that the number of481

retrieved points, the retrieval rates and the number of as-planned points would482

not always be so high, in which case the values of the corresponding thresh-483
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Figure 7. As-built and as-planned data at different stages of the retrieval process in
Experiment 1 (only 1% of the total number of points of each cloud is displayed to
increase clarity).

olds (∆Rangemin, Pnmin, Rnmin and R%min) would have a higher impact on484

the retrieval results. More robust methods to automatically estimate these485

thresholds are thus suggested in Section 7.486

5.2 Experiment 2: Application to Construction Progress Assessment487

5.2.1 Setup488

The goal of this second experiment is to demonstrate how this new approach489

could be applied to automated construction progress assessment. In this ex-490

periment, the same setup is used. The difference is that instead of a project491

3D CAD model, a project 4D CAD model is used. It is built using the project492

3D CAD model displayed in Figure 4 and the simple construction schedule,493
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for which the bar chart is shown in Figure 8(a). The resulting as-planned494

project 4D CAD model is displayed in Figure 9(a). Then, the same scene as495

in Experiment 1 is scanned (Figure 6) and is assumed to occur on day 4 of the496

construction. The goal of the experiment is to retrieve all project 3D objects497

in the scan, and identify whether construction is on schedule, early, or late.498

The following input parameters are used:499

Schedule Uncertainty. A one-day uncertainty in schedule is used so that500

work completed earlier or later by one day can be identified. This implies501

that the scanned data is compared with three consecutive project 3D CAD502

models extracted from the project 4D CAD model and centered on the day503

when the scan is conducted (here day 4).504

∆Rangemin. Same as in Experiment 1 (30mm).505

Pnmin. Same as in Experiment 1 (100 points).506

Rnmin. Same as in Experiment 1 (500 points).507

R%min. Same as in Experiment 1 (50%).508

5.2.2 Results509

Table 3 summarizes the results obtained in this experiment. It shows that all510

3D objects in day 5 project 3D model are retrieved in the scanned data. The511

retrieval of each object is made with a minimum of 4,500 retrieved as-planned512

points per object and very high retrieval rates. Since the scan is assumed to513

take place on day 4, it can be concluded that construction is one day ahead of514

schedule. The bar chart of a possible resulting as-built schedule is displayed515

in Figure 8(b) and the corresponding as-built 4D CAD model is presented in516

Figure 9(b).517

Certainly, the metric used here to identify early, on time or late construction518

is very basic. However, these results demonstrate that this approach has great519

potential for supporting automated project work progress tracking.520

(a) As-planned Schedule (b) As-built Schedule

Figure 8. As-planned and as-built schedules of the construction of the column-slab
structure
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(a) As-Planned 4D CAD model (b) As-Built 4D CAD model

Figure 9. As-planned and as-built 4D CAD models of the construction of the column
-slab structure

Table 3
Retrieval results in Experiment 2

6 Impact of measurements uncertainties521

The previous experiments were conducted with somewhat ideal conditions and522

all measured values were considered exact. In construction site applications,523

measurement uncertainty could be non negligible and should therefore be es-524
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timated and taken into account in the object retrieval process. In the investi-525

gated problem, measurement uncertainties include: referencing uncertainties526

and laser measurement uncertainties.527

6.1 Referencing uncertainties528

Referencing uncertainties refer to uncertainties in the 3D CAD model geo-529

referencing or/and in the range point cloud geo-referencing. These can be530

translated into a single set of referencing uncertainties which is the difference531

between the real and virtual geo-positions of the laser scanner. This referenc-532

ing uncertainty includes uncertainties in location (northing, easting, altitude)533

and in orientation (heading, pitch, roll). Northing, easting, altitude, heading,534

pitch and roll can be obtained using different global positioning technolo-535

gies. However, the accuracy that these technologies can currently achieve is536

limited to several centimeters in location and half a degree in orientation at537

best. These uncertainties are significant enough that their impact on object538

recognition systems that use these technologies can be non-negligible.539

A method is suggested here for the automated correction of referencing error.540

This correction can be made prior to performing the actual point retrieval541

process. For each of the six 3D model referencing parameters (northing, east-542

ing, altitude, heading, pitch and roll), uncertainty is modeled with a discrete543

distribution with three values centered on the measured one. Then, for each544

combination of six discrete values (one discrete value for each of the six pose545

parameters), the retrieval of a fixed number of random range points, nrpoints546

(for instance nrpoints = 600points) is performed using the approach described547

in this paper. The likelihood of each combination being the best referencing is548

calculated using a mean square error estimator based on the range differences549

between the nrpoints as-built points and their corresponding as-planned points.550

The best referencing estimation is the one with the lowest mean square error.551

If a better referencing is identified for a set of six values with at least one of552

them different from its corresponding measured one, the measured values are553

correspondingly updated and this process is reiterated. This iteration occurs554

until the best pose is the one with the six parameters set to their measured555

values.556

Although each pose improvement increment requires the analysis of 36 com-557

binations of discrete pose values, note that the complexity of this method is558

fixed with respect to the number of as-built range points, as only a subset of559

a fixed number of points is used. Also, it is acknowledged that this method560

requires estimating the parameters necessary for the description of the dif-561

ferent discrete distributions (distribution type, space between values in each562

distribution, nunc). Previous research using likelihood estimators suggest that563
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a value of nrpoints = 100 · nparam, where nparam is the number of uncertainty564

parameters (here six), is statistically sufficient. Then, the type of discrete dis-565

tribution to use is not obvious. By default, it is thus suggested to consider566

equal probabilities for each discrete value (uniform discrete distribution). Fi-567

nally, the space between values in each distribution could be set as one time568

or half the measurement uncertainty.569

At this time, this correction approach has only been tested a couple of times,570

using manually defined discrete uniform distributions. While the results seemed571

fairly good, a comprehensive set of experiments would be required to confirm572

the efficiency and robustness of this approach for automated pose correction.573

Additionally, the adequacy of basing the mean square error estimator on range574

differences can be discussed. Indeed, range difference may provide different575

results than orthogonal projection distance which is more commonly used be-576

cause more intuitive.577

6.2 Laser measurement uncertainties578

Laser measurement uncertainties relate to the uncertainties in the measure-579

ment of each individual point. They include uncertainties in pan, tilt and range580

values.581

Pan and tilt uncertainties result from imperfections in the laser scanner em-582

bedded pan&tilt unit. While pan and tilt uncertainties are independent from583

the scanned surface, it must be noted that they are also generally considered584

value independent. Pan and tilt uncertainties are provided by laser scanner585

providers. In the case of the scanner used in this research, pan and tilt un-586

certainties are respectively 60µrad and 70µrad (0◦0′12′′ and 0◦0′14′′). These587

respectively translate into 0.6mm and 0.7mm accuracy at 10m, or 6mm and588

7mm accuracy at 100m. A common approach to take such uncertainties into589

account when determining a point range is to analyze the ranges of all the590

points neighboring the studied one. Such an approach is however inappropri-591

ate here since the pan and tilt angle uncertainties are much lower than the592

maximum pan and tilt point densities that the scanner can achieve. Another593

more computationally complex method is the calculation for each point of594

several “intermediate” range values obtained with different combinations of595

pan and tilt angles adjusted with uncertainty. All the “intermediate” ranges596

could then be analyzed to infer the most probable point range. This method597

is similar to the one proposed above for referencing correction.598

Range uncertainty is related to several factors including: the scanning angle599

to the scanned surface, the material of the scanned surface, environmental600

conditions, etc. Range measurement uncertainty is generally provided by laser601
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scanner providers for specified material reflectivity and with scanning direc-602

tions perpendicular to the scanned surface. The laser scanner used in the603

experiments above presents the following range “best” uncertainties: 1.5mm604

at 50m and 7mm at 50m for 100% reflective targets. A possible method to take605

range measurement uncertainty into account when matching two as-built and606

as-planned points is presented in Section 7.2 when discussing the automated607

estimation of the threshold parameter ∆Rangenmin.608

Overall, it must emphasized that these laser measurement uncertainties remain609

negligible when compared with current geo-referencing uncertainties.610

7 Thresholds Parameters Estimation611

The proposed object recognition approach uses two metrics that require some612

input threshold parameters: ∆Rangemin, Pnmin, Rnmin and R%min. In the ex-613

periments presented in this paper, these thresholds were manually a priori614

estimated. But for a complete automated approach, these would have to be615

automatically estimated, especially since their values should be adjusted to616

different scanning and scene condition factors.617

7.1 Pnmin, Rnmin and R%min618

In the object recognition metric, Pnmin, Rnmin and R%min could be estimated619

by taking into consideration the following factors:620

Scan point density. The scan point density is the pan and tilt difference621

between two neighboring points. If a scene is scanned twice with two dif-622

ferent point densities, one twice denser than the other, the as-built and623

resulting as-planned point clouds of each scanned object will contain twice624

more points in the denser scan. It is therefore possible that for a given man-625

ually a priori estimated Pnmin value, an object is considered for search with626

the denser scan and not with the less dense one. Similarly, it is possible627

that for a given manually a priori estimated Rnmin, the retrieval rate of628

an object will have to be calculated with the less dense scan, but not with629

the denser one. Since scan point density should not have any effect on the630

retrieval metrics, Pnmin and Rnmin must be adjusted to it: Pnmin = f1(dscan)631

and Rnmin = f2(dscan), where the functions f1() and f2() could be a priori632

experimentally estimated. Note, that R%min is not impacted by the scan633

point density as it is expressed as a percentage of points that is invariant634

with this factor.635

Scanner-object (or scanner-STL triangle) distance. The same argument636
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can be made with two exactly similar objects that are at different dis-637

tances from the scanner, one twice further than the other. Pnmin and Rnmin638

should thus be automatically adjusted for each object, and consequently639

for each STL triangle, by taking the as-planned scanner-STL triangle dis-640

tance into account. The as-planned distance between the scanner and a641

STL triangle, RangeSTL, can be estimated as the mean of the distance be-642

tween the scanner and the three STL triangle vertices. As a result, Pnmin643

and Rnmin could be further customized for each STL triangle such that:644

P STL
nmin = fSTL

1 (dscan, RangeSTL) and P STL
nmin = fSTL

2 (dscan, RangeSTL), where645

the functions fSTL
1 () and fSTL

1 () could be a priori experimentally estimated.646

Note again that R%min is not impacted by the scanner-STL triangle distance647

as it is expressed as a percentage of points that is invariant with this factor.648

While methods for automating the estimation of Pnmin and Rnmin are pre-649

sented here, no method is suggested for R%min. ForR%min, the authors suggest,650

with lack of experience to use the midpoint value of 50%.651

7.2 ∆Rangenmin652

In the point matching metric, ∆Rangemin could be estimated by taking into653

consideration the following factors:654

Range. As presented earlier, range measurement uncertainty depends on655

many factors. It is nonetheless generally provided by laser scanner providers656

for specified material reflectivity and with scanning directions perpendic-657

ular to the scanned surface. In Section 6.2, it can be seen in the speci-658

fications of the scanner used in this research that range uncertainty in-659

creases with range (this is true for any scanner). Therefore, the threshold660

parameter ∆Rangemin should be customized for each scanned point, p :661

∆Range
p
min = f

p
3 (Rangep), where Rangep is the measured range of point p,662

and f
p
3 () could be estimated a priori through multiple experiments.663

Reflection angle. Uncertainty in range acquisition increases with the reflec-664

tion angle between the point scanning direction and the scanned surface665

normal vector. The impact of the reflection angle on range uncertainty is666

illustrated in Figure 10. The as-planned reflection angle of each as-planned667

range point could be estimated when calculating the as-planned point. This668

estimation could then be used to further customize the ∆Range
p
min thresh-669

old: ∆Range
p
min = f

p
3 (Rangep, RefAngleSTL), where RefAngleSTL is the670

point p as-planned reflection angle, and f
p
3 () could be a priori experimen-671

tally estimated.672

Surface reflectivity. Finally, acquired range uncertainty decreases with sur-673

face reflectivity. If an estimated object surface reflectivity could be obtained674

from the material applied to the objects in the original project 3D CAD675
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model, then each STL triangle could be assigned an estimated reflectivity676

and the function f
p
3 () and consequently the threshold ∆Range

p
min could be677

further customized.678

Overall, while methods for automatically estimating the different input pa-679

rameters used in the proposed object retrieval approach are presented here,680

these still require the predetermination of some functions fSTL
1 (), fSTL

2 () and681

f
p
3 () through a comprehensive set of experiments. These experiments have not682

been conducted yet and would require a complex test bench. The need for such683

experiments has been expressed in previous work and the National Institute684

for Standards and Technology (NIST) has been working on the construction685

of such a facility for comprehensive LADAR performance evaluation [16].686

Figure 10. Impact of the reflection angle on the acquired range uncertainty.

8 Conclusion and Future Work687

The cost of 3D range scanning is rapidly declining due to recent developments,688

and use of 3D images is increasing accordingly. In this paper, a new approach689

for automatically retrieving 3D CAD objects in 3D range point clouds is pre-690

sented. This approach takes advantage of 3D/4D CAD models and (geo-)691

referencing technologies. Experimental results first demonstrate that this com-692

pletely automated approach is quite robust, including in the case of occlusions693

due to other CAD elements. The second experiment further illustrates these694
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strengths and demonstrates how it could robustly support applications such695

as automated construction progress tracking. Future work will focus on con-696

firming these results with full-scale structures. The impact of uncertainties in697

(geo-) referencing values and in point measurement values will be further inves-698

tigated, and methods for automating the estimation of the required threshold699

parameters will also be further tested.700

Finally, the authors would like to re-emphasize the fact that this new approach701

has applications not only in automated construction work progress tracking,702

but also in construction quality control, in 3D image database information703

retrieval, and very likely in many other areas.704
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