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ABSTRACT

We present a real-time visual-inertial localization approach directly
integrable in a wearable immersive system for simulation and train-
ing. In this context, while CAVE systems typically require com-
plex and expensive set-up, our approach relies on visual and inertial
information provided by consumer monocular camera and Inertial
Measurement Unit, embedded in a wearable stereoscopic HMD.
6-DOF localization is achieved through image registration with re-
spect to a 3D map of descriptors of the training room and robust
tracking of visual features. We propose a novel efficient and robust
pipeline based on state-of-the-art image-based localization and sen-
sor fusion approaches, which makes use of robust orientation infor-
mation from IMU, to cope with camera fast motion and limit mo-
tion jitters. The proposed system runs at 30 fps on a standard PC
and requires very limited set-up for its intended application.

1 INTRODUCTION

Recent advances in the simulation capabilities of VR/AR systems
have stirred up the interest for immersive simulation and training
in different fields. Realistic perception of virtual environments,
as well as consistent augmentation of real world with information
tags or virtual objects, are of great importance in different sectors,
e.g. enhanced project visualization and design review or computer-
aided surgery in medical training. Immersive environments can be
used to simulate varying operative scenarios, so that the user can
experience critical situations and interact with them without being
exposed to health and safety hazards.

In order to deliver realistic and interactive user experience, the
localization stage, which aims at estimating in real time the posi-
tion and orientation of the trainee’s head, is of crucial importance.
CAVE systems, which represent the standard for 3D immersive en-
vironments, often implement head tracking by tracking IR mark-
ers through multiple cameras/sensors, with the rendered scene pro-
jected on wide screens surrounding the user. Different commercial
systems, requiring dedicated facilities, on-purpose calibration and
set-up procedures, are generally employed in such environments,
with significant impact on the overall complexity and cost. For
these reasons, recent research efforts have aimed to reach a good
trade off between acceptable performance (robustness, accuracy,
precision) and overall system complexity and cost. In particular,
recent developments in HMD technologies are paving the way for
the integration of commodity consumer devices into systems that
can be robust and very cost-effective (potentially a small fraction of
the cost of conventional CAVE approaches).

In this work anego-motion approach, relying on the comple-
mentary action of visual and inertial tracking, is proposed. The
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6-DOF pose of the trainee’s head is estimated using visual infor-
mation acquired by a monocular camera and inertial data provided
by an high rate (1 kHz) Inertial Measurement Unit (IMU) integral
with a stereoscopic HMD (Fig. 1). The main contribution consists
in a novel localization pipeline conceived to cope with fast changes
in motion patterns and limit drift and jitter effects, so to minimize
system outage and provide consistent user experience.

Figure 1: Illustration of the main components of the proposed immer-
sive system.

2 KEY STAGES OF THE PROPOSED APPROACH

The proposed method relies on two fundamental stages. First, an
off-line visual reconstruction stage, performed in advance once and
for all, encodes the visual structure of 3D landmarks present in
the scene into a database of visual descriptors, ormap. A multi-
descriptor implementation of this stage allows flexibility during
on-line operations. During on-line operations, anon-line hybrid
localization approach, which couples in an Extended Kalman Fil-
ter (EKF) framework the robust high-rate orientation data from the
IMU with visual information from landmark matching and frame-
to-frame tracking, is employed to robustly estimate the head’s pose.
The main features of the two stages are summarized in the follow-
ing paragraphs.

2.1 Off-Line Reconstruction Stage
Given an input sequence of images of the scene taken from different
viewpoints, a sparse 3D reconstruction (point cloud) based on SIFT
features is initially achieved using theBundler framework [4]. Due
to the computational effort required by SIFT, which would affect
time performance during on-line operations, an approach similar
to the one employed in [2] is adopted to compute more efficient
descriptors simultaneously preserving a good trade-off with robust-
ness. Two different kinds of visual features, respectively SURF and
BRISK descriptors, have been comparatively evaluated due to their
different robustness and computational efficiency. The 3D map is
then filtered according to an average repeatability score and number
of reconstructing cameras.

2.2 On-Line Localization Stage
During on-line operations, theglobal pose of the user’s head is es-
timated at each time instantt from synchronized pairs of images
(I(t)) and IMU data (Γ(t)), {I,Γ}t , according to different modes:

• In the INITIALIZATION mode, the absolute pose of the
camera is determined from scratch through a visualglobal



matching approach. A set of query descriptors, computed for
Nextr keypoints extracted from the current image, is matched
with the descriptors of the whole scene map throughfast ap-
proximate nearest neighbor search. Given the set of 2D-3D
correspondences, the absolute camera pose is estimated by
using the 3-point algorithm within a RANSAC framework for
robust geometric verification [1].

After the very first initialization, an on-the-fly “hand-eye” cal-
ibration of the camera-IMU system, performed on a batch of
{I,Γ}t pairs acquired during the firstNcalib frames, permits to
refer the inertial measures to the global pose. Our approach
is similar to [3], but it can be applied directly on-line (details
are omitted due to lack of space).

• Once successfully initialized, the system switches to
TRACKING mode. Pose tracking is performed by fusing the
visual and inertial data in an EKF framework. As far as the
visual information is concerned, a frame-to-frame tracking
framework based on Kanade-Lucas-Tomasi (KLT) tracker is
employed. A robust procedure for there-initialization of the
tracker, based on a spatial skewness coefficientγ of akeypoint
occupancy map, has been implemented (see [1]), so that a suf-
ficient number of spatially distributed keypoints is preserved
over long periods of tracking. Ifγ falls below γmin = 0.65,
the tracker isre-initialized by uniformly sampling a maximum
numberk1 = 160 3D points of the map within the camera frus-
tum. These points are then projected on the image plane, thus
providing again a uniform set of 2D-3D correspondences,i.e.
keypoints, to be tracked in the subsequent frames. In case
of fast motion and/or image blur, or occlusions, the visual
tracking approach can fail. In these cases, the system en-
ters theTRACKING IMU mode that relies on the IMU data
alone. Among different possible strategies, we have chosen
to keep fixed the position during complete visual outage, and
frequently invoke theRELOCALIZATION. The intent of this
approach is to limit the time interval of visual outage and ac-
cordingly positional drift. This selected strategy is based on
the observation that it is likely that users do not translate sig-
nificantly while simultaneously rotating their head fast. In-
ertial and visual data are initially processedseparately, so to
provide a robust real-time estimation of theorientation and a
set of visual inliers, respectively, and are then fused together
in the EKF to determine theposition. This approach results in
increased overall stability, decoupling cross errors due to non-
linearities that can lead to divergence, as well as efficiency by
guiding the visual search.

• When unreliable poses are detected, the system enters the
RELOCALIZATION mode, which employs a fast guided vi-
sual matching (just within anexpanded camera frustum) to
recover effectively the pose, relying in the meantime on IMU
data alone (TRACKING IMU). If the system is unable to re-
cover the pose forNlost consecutive frames, it enters again the
INITIALIZATION mode.

3 EXPERIMENTAL RESULTS

The wearable immersive system consists of a PtGrey FireFlyMV
camera (30 fps, 640×480) mounted integrally with an OculusVR
Rift HMD. Tests were performed in a rectangular room (3.75 m
× 5.70 m), with walls covered with differently textured posters ar-
ranged according to a random layout.

In order to assess properly the on-line performance of our sys-
tem, the following approach is employed. A dense virtual model of
the room has been reconstructed by re-meshing a laser point cloud
and registered with the map’s 3D point cloud. In this way the views
of thevirtual room, rendered according to the estimated pose, can

be visually compared to the acquired images that constitute an in-
direct ground truth.

Here we present results related to a sample sequence (4 mins),
containing multiple motion patterns (2 looping paths, rotation on
approximately fixed position, fast motions). The system performed
live at approximately 30 fps on average on a Dell Aurora Alien-
ware PC. In Fig. 2, four sample images acquired by the camera are
shown next to the rendered views of the room model. It can be
seen that, using BRISK, visual agreement is still good after relo-
calization (third column), showing very limited drift even after a
long tracking period (fourth column). In contrast, by using SURF,
since relocalization cannot be invoked too frequently in order not
to impact time performance, the system is more prone to positional
drift after a prolonged outage of the visual tracking stage (Fig. 2,
third and fourth column). By analyzing a similar sequence (4 mins),
with the user free to walk but returning three times to the same pre-
defined location, the average loop closure errors were found to be
0.18 m for BRISK and 0.88 m for SURF.

Figure 2: Real camera images (top), and rendered view of the virtual
room for BRISK (center) and SURF (bottom), for four sample time
instants (columns).

4 CONCLUSION

Our live experiments show a good overall consistency for different
motion patterns; the role of fast and frequent relocalization proved
to be crucial in limiting drift and jitter effects. This was emphasized
by assessing the performances of two different visual approaches,
based on BRISK and SURF, in different conditions. These con-
siderations have prompted us to follow two main directions for fu-
ture work. A robust procedure for the selection of stable and ac-
curate landmarks from the pre-built database, maximizing feature
repeatability and distinctiveness, can significantly improve the per-
formance of the re-localization stage. Moreover, the development
of a method for robust integration and interleaving of global match-
ing and visual tracking, both aided by IMU information, can have a
further significant impact on limiting drift and jitter effects.
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